Описание импульсного зарядного устройства для автомобильного аккумулятора
Bis-auto.ru

Автомобильный портал

Описание импульсного зарядного устройства для автомобильного аккумулятора

Выбор импульсных зарядных устройств для аккумулятора автомобиля

Импульсное зарядное устройство для автомобильного аккумулятора с полупроводниковым преобразователем напряжения отличается низким энергопотреблением. Изделие поддерживает автоматическое восстановление емкости источника питания. Часть моделей оснащается герметизированными пластиковыми корпусами, допускающими эксплуатацию устройств в помещениях с повышенной влажностью.

Назначение зарядного устройства

Оборудование предназначено для восполнения емкости аккумуляторов, используемых в автомобилях для запуска силовой установки и поддержки работы электрических и электронных приборов во время стоянки. Долговечность свинцово-кислотного источника питания зависит от периодичности и корректности зарядки. При длительных простоях автомобиля возможен глубокий разряд батареи, негативно влияющий на емкость и ресурс аккумулятора.

Дополнительным фактором, снижающим срок службы АКБ, является низкая температура окружающей среды. Остывший электролит не обеспечивает протекания электрохимических реакций, поэтому при коротких поездках зимой происходит разряд аккумулятора. Использование внешнего зарядного блока исправляет ситуацию, но при ошибочном выборе параметров тока происходит снижение эффективности работы источника питания на 25-30%.

Устройство импульсного ЗУ

В конструкции импульсного оборудования установлен выпрямительный блок, формирующий постоянное напряжение на входе. Затем в цепи смонтирован высокочастотный генератор, работающий совместно с импульсным трансформатором. Устройства поддерживают постоянное напряжение в выходной цепи с заданными параметрами. В конструкции установлена микросхема, регулирующая параметры тока в зависимости от положения рукояток корректора.

Виды и типы

Типы зарядного оборудования для автомобильных источников питания:

  1. Зарядные и зарядно-предпусковые блоки, подающие в цепь питания ток силой до 12-15 А. Оборудование восполняет емкость аккумуляторов, установленных в автомобилях. Предусмотрено параллельное использование источника постоянного тока (например, для освещения салона или работы акустической системы).
  2. Зарядно-пусковое оборудование с блоком, накапливающим электрический разряд. Изделие запускает бензиновый или дизельный двигатель, допустимый ток в цепи составляет 350-400 А. Емкости накопителя хватает на 3-4 прокрутки коленчатого вала силовой установки.

Оборудование классифицируется по конструктивным особенностям:

  1. Стандартные трансформаторные блоки, преобразующие переменный ток при помощи трансформатора. В цепи установлен выпрямитель полупроводникового типа, к выходу подключаются клеммы аккумулятора.
  2. Импульсное (инверторное) оборудование, укомплектованное выпрямительным мостом на входе. Изделия имеют меньшие размеры и массу.

Характеристики и преимущества

Основные технические характеристики оборудования инверторного типа:

  • напряжение в цепи питания – от 185 до 230 В (переменный ток);
  • напряжение в цепи зарядки – от 6 до 24 В (постоянный ток);
  • допустимый ток в выходной цепи – до 20 А;
  • емкость заряжаемого аккумулятора – от 5 до 200 А*ч;
  • масса – от 0,2 до 2 кг;
  • мощность оборудования – от 100 до 800 Вт.

Отказ от громоздких трансформаторов, требующих интенсивного охлаждения, позволил снизить вес оборудования. Уменьшение количества цветных металлов в конструкции способствовало уменьшению стоимости.

Особенности

Импульсные блоки имеют следующие особенности:

  1. В конструкции оборудования предусмотрена выдвижная или откидная рукоятка для переноски.
  2. На фронтальной панели располагаются контрольные приборы и индикаторы, позволяющие контролировать процесс восполнения емкости.
  3. Оборудование поддерживает выбор рабочих режимов и типов источников питания (стандартный, кальциевый или с загущенным электролитом).
  4. Коммутационные провода оснащаются штатными зажимами. Предусмотрена защитная изоляция красного и черного цвета (для визуального определения полярности).
  5. В конструкции предусмотрена защита от ошибочного подключения, перегрузки или короткого замыкания.

Специальный режим

Импульсный зарядный блок для автомобильных АКБ поддерживает специальный режим ускоренного восполнения емкости. Тумблер обозначается надписью Boost, после активации происходит интенсивная зарядка батареи. Функция включается на 5-10 минут, после чего производится попытка пуска мотора.

Затем источник питания заряжается от генератора автомобиля или подсоединяется к внешнему блоку для восполнения емкости.

Использовать форсированный режим для восстановления полной емкости аккумулятора запрещено из-за ускоренной деградации АКБ.

Преимущества и недостатки

Преимущества импульсного зарядного устройства для автомобиля:

  1. Малые габариты и вес оборудования позволяют хранить изделие в багажнике автомобиля или в специальных нишах в салоне.
  2. Оборудование работает в автоматическом режиме, владельцу не требуется корректировать параметры. Зарядник анализирует напряжение на клеммах батареи, обеспечивая регулировку силы тока. За счет постоянной корректировки параметров обеспечивается увеличение срока эксплуатации аккумулятора.
  3. В конструкции блока предусмотрена защита от короткого замыкания или ошибочного подсоединения к клеммам аккумулятора. Часть устройств оснащается температурными сенсорами, разрывающими цепь питания при перегреве.
  4. Микропроцессорный блок предупреждает владельца о допущенных ошибках при настройке. Информация выводится на дисплей или отображается контрольными диодами, подача тока к клеммам батареи блокируется до исправления ошибок.
  5. Пониженное потребление электроэнергии (по сравнению с традиционными трансформаторными блоками).

Импульсное зарядное оборудование имеет ряд недостатков, связанных с электронными цепями. Большое число контрольных датчиков усложняет конструкцию изделия, при поломке компонентов ремонт нецелесообразен. Стоимость восстановления зарядного блока импульсного типа сопоставима с ценой нового устройства.

Еще одной отрицательной чертой импульсных приборов является возникновение радиочастотных помех, в конструкции устройств применяются специальные экраны, не пропускающие радиопомехи в эфир.

К недостаткам относится и чувствительность импульсного блока к перегрузке. Если внешняя нагрузка обладает пониженным сопротивлением (рассчитана на увеличенный зарядный ток), то силовые элементы блока работают с перегрузкой. Устройство пытается поддерживать заданное напряжение, полупроводниковые элементы постепенно перегреваются и выходят из строя.

Как правильно заряжать

Алгоритм корректной зарядки автомобильного источника тока состоит из следующих этапов:

  1. Отключить проводку автомобиля от штырей аккумулятора, отвернуть крепежную планку, а затем снять источник питания с площадки.
  2. Установить аккумулятор в проветриваемом помещении, подсоединить разъемы зарядного устройства к контактным штырям с соблюдением полярности.
  3. Включить штепсельную вилку в цепь переменного тока, выбрать тип или вольтаж батареи и требуемый режим работы зарядного приспособления. Рекомендуется периодически контролировать процедуру восполнения емкости.
  4. После завершения процедуры оборудование отключается от сети и аккумулятора, который затем размещается в моторном отсеке автомобиля. Для повышения надежности работы рекомендуется покрыть контактные штыри защитным составом (наносится после установки клемм).

Особенности самостоятельного изготовления импульсного ЗУ

Для изготовления оборудования своими руками потребуется трансформатор, имеющий на выходе рабочее напряжение в пределах 14 В. Для поддержания необходимого значения требуется введение дополнительных витков обмотки или удаление части провода.

На входе ставится импульсный диодный мост, рассчитанный на обратное напряжение 400-600 В. Для обеспечения работоспособности мост рассчитывается на силу тока 2-3 А.

Элементы устанавливаются на теплоотводящей пластине, допускается применение вентилятора.

Частотный преобразователь строится на основе тиристоров, предусматривается установка ключей, рассчитанных на ток до 20 А. Для защитного контура по силе тока используются шунтирующие сопротивления (путем изменения номинала корректируются рабочие характеристики зарядного блока). В конструкции предусматривается защита от ошибочного подсоединения или короткого замыкания, используются светодиодные индикаторы состояния.

Блок индикации строится на основе сигнального узла от электрического инструмента. Красная лампа активируется при появлении напряжения в выходной цепи, зеленый индикатор плавно гаснет при достижении требуемого напряжения на штырях аккумулятора. В схеме предусматривается сетевой фильтр, собранный из катушки и двух конденсаторов пленочного типа. Компоненты блока соединяются пайкой, а затем располагаются в корпусе.

Сборка самодельного оборудования требует знаний микроэлектроники и наличия паяльного оборудования, метод подходит не для всех автовладельцев.

Распространенные схемы ЗУ

При изготовлении зарядного устройства можно реализовать 3 схемы работы:

  1. Мостовой блок, лишенный понижающего трансформатора. Конструкция не применяется для зарядки аккумуляторов из-за повышенного напряжения в цепи.
  2. Оборудование с нулевым выводом трансформаторного блока. Схема обеспечивает на выходе мощность до 500 VA, используется при изготовлении зарядного оборудования для автомобильных источников питания.
  3. Мостовое подсоединение трансформатора применяется для блоков бесперебойного питания с повышенной мощностью (до 50-60 kVA).

Критерии отбора ЗУ для автоаккумулятора

Основные критерии и рекомендации по выбору импульсного зарядного блока:

  1. Перед покупкой необходимо определить технические параметры зарядного блока (рабочее напряжение, допустимая емкость заряжаемого аккумулятора). При использовании малосурьмянистых источников тока рекомендуется покупка оборудования с режимом десульфатации.
  2. Наличие электронных или стрелочных контрольных приборов позволяет визуально определять параметры зарядного тока. Если владелец не намерен контролировать работу оборудования, то рекомендуется купить зарядный блок со светодиодной индикацией.
  3. Проанализировать отзывы владельцев с целью выбора качественного оборудования. Изделие приобретается в специализированном магазине, предоставляющем гарантийное обслуживание. После покупки рекомендуется проверить устройство, произведя зарядку аккумулятора. Если обнаруживаются проблемы, то оборудование меняется по гарантии.

Самые популярные модели

Наиболее распространенные модели импульсных зарядных устройств:

  1. Helvi Discovery 60. Предназначено для восстановления емкости батарей напряжением 6 и 12 В (емкость до 120 А*ч). Примененный микропроцессорный контроллер допускает подзарядку аккумуляторов, установленных на автомобиле.
    Блок поддерживает режим десульфатации, максимальное энергопотребление составляет 70 Вт.
    Существует модернизированный зарядник Discovery 60, позволяющий подключать источники постоянного тока емкостью до 150 А*ч (поддержка аккумуляторов напряжением 6 В не предусмотрена).
  2. На второй позиции рейтинга находится Fubag Micro 80/12, предназначенный для обслуживания аккумуляторов автомобилей и мотоциклов, переключение рабочего напряжения выполняется кнопкой, на фронтальной части корпуса расположены контрольные светодиоды.
    Допускается коммутация аккумуляторов с жидким или гелеобразным электролитом емкостью от 3 до 80 А*ч. Оборудование укомплектовано двухступенчатым регулятором силы тока, для упрощения эксплуатации использована интеллектуальная программа зарядки аккумуляторов.
  3. Hyundai HY 800. Оснащен малогабаритным дисплеем на верхней части корпуса, поддерживается подключение автомобильных свинцовых аккумуляторов емкостью до 160 А. Для восполнения емкости мотоциклетных источников питания используется блок HY 400, укомплектованный переключателем напряжения.
    В конструкции предусмотрен тестовый прибор, текущее напряжение аккумулятора отображается на дисплее. Контроллер осуществляет интеллектуальный подбор параметров зарядного тока, поддерживается режим десульфатирования.
  4. Автоэлектрика Т-1001АР. Оснащен металлическим плоским корпусом толщиной 38 мм. Устройство относится к категории профессионального оборудования, в конструкции предусмотрена информационная панель с контрольными лампами, поддерживаются аккумуляторы емкостью до 110 А*ч (напряжение 12 В). Устройство имеет нижний порог зарядного тока 0,1 А, максимальная сила тока при коммутации аккумулятора составляет 9 А.
  5. Daewoo DW800. Рассчитан на аккумуляторы емкостью до 200 А*ч. Оборудование поддерживает режим тестирования источников питания, что обеспечивает хорошее качество зарядки. Контроллер поддерживает 4 рабочих режима – автоматический, плавный, ускоренный и зимний.
    Информация о состоянии аккумулятора и способе восполнения емкости отображается на жидкокристаллическом дисплее. Корпус изготовлен из ударопрочного пластика, обеспечивается класс защиты от влаги и пыли IP65.
Читать еще:  Чистка форсунок своими руками: ситуации и способы проведения процедуры

Импульсное оборудование рекомендуется приобретать автомобилистам, редко использующим свое транспортное средство. Подключение импульсного зарядного блока, отрегулированного на малый ток, позволяет зарядить аккумулятор в щадящем режиме. Вспомогательный режим десульфатации обеспечивает восстановление емкости батареи после глубоких разрядов.

KOMITART — развлекательно-познавательный портал

Разделы сайта

DirectAdvert NEWS

Друзья сайта

Осциллографы

Мультиметры

Купить паяльник

Купить Микшер

Купить Караоке

Статистика

Импульсное ЗУ для автомобильных аккумуляторов с током до 7 Ампер.

Импульсное ЗУ для автомобильных аккумуляторов с током до 7 Ампер.

Импульсное зарядное устройство_схема_описание

Для радиолюбителей, отдающих предпочтение импульсной технике, предлагаем ознакомиться с принципиальной схемой малогабаритного зарядного устройства, способного заряжать аккумуляторы током до 7 Ампер, при этом ток потребления устройством от сети 220 Вольт не превышает 2 Ампер, и остается работоспособным при снижении питающего напряжения примерно до 170 Вольт.

Принципиальная схема зарядного устройства изображена на следующем рисунке:

Установив необходимый ток заряда, данным устройством можно заряжать не только автомобильные, но и другие аккумуляторы, например, блоков бесперебойного питания, аккумуляторы электроинструмента, и т.д. Зарядный ток контролируется с помощью встроенного амперметра, в роли которого можно использовать стрелочный индикатор от магнитофона с соответствующим шунтом, и шкалой, отградуированной в амперах.

Вернемся к принципиальной схеме. Входная часть – высоковольтная. На входе стоит выпрямитель D1, рассчитанный на ток до 10 Ампер, и пара сглаживающих емкостей С1 и С2. Выпрямленное напряжение получается порядка 290 Вольт. На транзисторах Т1 и Т2 собран блокинг-генератор, на выходе которого стоит импульсный трансформатор. Обмотка III является нагрузкой генератора, обмотки II и IV обеспечивают поочередное открывание транзисторов генератора, частота которого лежит в пределах 25…30 кГц. Диоды D2 и D3 обеспечивают защиту транзисторных ключей от пробоя обратным напряжением, это связано с индуктивными выбросами, которые могут возникать в импульсном трансформаторе. R2 и R3 стоят как ограничители тока, протекающего через ключи, а резисторы R4 и R5 — ограничители токов баз Т1 и Т2 соответственно.

Далее по схеме идет низковольтная часть. С обмоток импульсного трансформатора V и VI
Переменное напряжение поступает на выпрямитель D4, фильтруется емкостью С4 и поступает на ШИМ-регулятор (транзисторы Т3 и Т4). Переменный резистор изменяет скважность импульсов, которыми управляется полевой транзистор Т5. От номиналов емкостей С6 и С7 зависит частота генерации широтно-импульсного модулятора, она должна лежать в диапазоне 5…7 кГц.

Лампа HL1 – визуальный контроль работы зарядного устройства.
На низковольтном выпрямителе получается порядка 18 Вольт, поэтому последовательно с вентилятором, рассчитанным на напряжение 12 Вольт, включен резистор номиналом 10 Ом.

Чуть не забыли написать про кнопку S1. С ее помощью производится запуск генератора, и, соответственно пуск зарядного устройства в работу. Эта кнопка не фиксированная, запуск осуществляется коротким нажатием, то есть импульсом. Если на выходе будет короткое замыкание, генерация сорвется, и блокинг-генератор прекратит работу. После устранения КЗ пусковая кнопка нажимается заново.

Основой для намотки служит ферритовое кольцо, наружный диаметр которого 30 мм. Параметры намотки следующие:

● Обмотка III — 140 витков, провод ПЭЛ-0,31 мм, мотается первой, далее слой фторопластовой ленты.

● Обмотки I, II, IV — по 2 витка каждая, можно использовать жилы от телефонного кабеля.

● Обмотки V, VI — по 18 витков каждая, диаметр провода 3,6 мм. Для удобства в намотке скрутите жгут из 20-ти жил провода диаметром 0,18 мм, намотать будет гораздо легче. Для скручивания жгута используйте шуруповерт.

В результате должно получиться примерно так:

Импульсный трансформатор для зарядного устройства

Ключевые транзисторы Т1 и Т2 – биполярные, типа MJE13007, устанавливаются на небольшие радиаторы. Можно заменить на EN13007, EN13009.
Транзисторы Т3 и Т4 — биполярные, 2SC1815. Можно заменить на КТ315.
Транзистор T5 — полевой, типа N302AP, тоже можно установить на небольшой радиатор.
Диодный мост D1 — KBP208G, или аналогичный на ток 10 Ампер.
Диоды D2 и D3 — 1N4007, можно заменить на отечественные КД226Д.
Резисторы R1, R4, R5, R7, R8, R9, R10, R11, R12 — типа МЛТ-0,25.
Резисторы R2, R3, R6 — типа МЛТ-0,5.
Конденсаторы С1 и С2 — 33 мкФ, на напряжение не ниже 250 Вольт.
Конденсатор С3 — 2200 пФ на 400 Вольт.

Ниже на снимках показан внешний вид печатной платы:

Печатная плата зарядного устройства

Печатная плата зарядного устройства_сторона элементов

. Печатную плату в формате LAY и принципиальную схему можно скачать одним файлом по прямой ссылке с нашего сайта. Размер файла архива — 0,045 Mb.

Далее на снимках показана собранная печатная плата (вид со стороны элементов, и вид со стороны дорожек):

Импульсное зарядное устройство в сборе

. Будьте аккуратны при отладке зарядного устройства, помните, что входные цепи находятся под напряжением питающей сети, ведь правила электробезопасности еще никто не отменял.

Импульсное зарядное устройство – прорыв в области приборов данного назначения

Как минимум один раз в жизни каждый автомобилист сталкивается с проблемой неработающего аккумулятора. Чтобы предотвратить такую неисправность, необходимо правильно обслуживать батарею и вовремя ее заряжать, используя зарядное устройство. Что представляет собой импульсное ЗУ для автомобильного аккумулятора, каков его принцип функционирования и как соорудить прибор своими руками — читайте далее.

Характеристика прибора

Устройства, предназначенные для зарядки автомобильного АКБ, делятся на несколько типов — трансформаторные и импульсные. Трансформаторные ЗУ для аккумулятора авто обладают большим весом и размерами, при этом их коэффициент полезного действия значительно ниже, чем у других устройств. В результате спрос на такие зарядки постепенно снизился. На сегодняшний день импульсное зарядное устройство является наиболее популярным типом.

Фирменное импульсное ЗУ Tesla

Устройство и принцип работы

Любое импульсное зарядное устройство для автомобильного АКБ представляет собой прибор, предназначенный для восстановления заряда.

Конструктивно импульсное ЗУ состоит из таких элементов:

  • трансформатора (импульсного);
  • устройства выпрямителя;
  • прибора стабилизатора;
  • элементов индикации;
  • основного блока, предназначенного для контроля процедуры заряда.

Необходимо отметить, что все элементы, из которых состоит импульсное зарядное устройство, по своей конструкции имеют небольшие размеры, если сравнивать с трансформаторными ЗУ. В принципе, соорудить такой прибор для зарядки автомобильного АКБ своими руками не так сложно — для этого потребуется только плата, которая будет управлять транзистором. В результате того, что конструкция данного типа приборов довольно простая, а компоненты для изготовления легко доступны, импульсные ЗУ популярны среди наших автолюбителей.

Внутренняя плата импульсного ЗУ

Что касается принципа работы, то сама процедура заряда может осуществляться одним из нескольких методов:

  • путем напряжения при постоянном токе;
  • напряжением неизменных параметров;
  • комбинированным методом.

В принципе, способ напряжения неизменных значений является самым правильным с теоретической точки зрения. Все потому, что импульсные ЗУ для автомобильных АКБ могут производить контроль в автоматическом режиме за параметрами силы тока только в том случае, если напряжение будет постоянным. Если вы хотите добиться того, чтобы уровень зарядки был наиболее максимальным, надо учитывать и параметр разряда.

Что касается способа напряжения при постоянном токе, то этот вариант не самый оптимальный. Все потому, что при оперативной зарядке аккумулятора, получаемой в результате воздействия постоянного тока, пластины прибора могут попросту осыпаться. А восстановить их будет уже невозможно.

ЗУ для заряда АКБ авто

Комбинированный вариант зарядки АКБ является одним из наиболее щадящих. При применении данного способа сначала проходит постоянный ток, а в самом конце процедуры он начинает изменяться на переменный. Далее, этот параметр постепенно снижается до нуля, таким образом стабилизируя уровень напряжения. По словам специалистов, такая схема работа позволяет предотвратить или снизить к минимуму вероятность закипания аккумулятора авто. Кроме того, при таком подходе снижается и вероятность выделения газов.

Аспекты подбора оборудования

Если вы хотите добиться того, чтобы батарея авто работала должным образом, необходимо заранее подумать о том, чтобы купить необходимое ЗУ для зарядки.

Читать еще:  Снятие и замена подшипника передней ступицы ваз 2110, 2111, 2112

Есть определенные нюансы этого вопроса, которые желательно учитывать:

  1. В первую очередь, многих потребителей интересует вопрос — сможет ли ЗУ, работая по своей схеме, восстановить полностью разряженную АКБ авто. Здесь нужно учитывать, что далеко не все зарядные устройства, продающиеся в автомагазинах, могут справиться с такой задачей. Поэтому при покупке данный момент необходимо уточнять у продавцов.
  2. Второй, немаловажный аспект — это уровень максимального параметра тока, который выдает зарядное устройство в ходе функционирования. Кроме того, нужно учитывать и напряжение, до которого будет заряжаться аккумулятор авто. К примеру, если вы остановите свой выбор на импульсном ЗУ, то учтите, что в нем должна быть опция отключения или функция поддержки, включающаяся автоматически при полном заряде (автор видео — ChipiDip).

Советы по эксплуатации

При эксплуатации ЗУ своими руками нужно учитывать несколько моментов. В первую очередь, это последовательность действий. Для начала рекомендуется демонтировать крышку устройства и открутить пробки. Если необходимо добавить электролит в систему, для этого используйте дистиллированную воду, сделать это нужно до того, как будет осуществлена процедура заряда.

Учтите несколько параметров:

  1. Уровень напряжения. Максимальный показатель в данном случае должен составлять не более 14.4 вольт.
  2. Сила тока. Этот параметр регулируется, для этого учитывайте уровень разрядки батареи. К примеру, если батарея авто разряжена на 25%, то при активации ЗУ параметр силы тока может возрасти.
  3. Время заряда аккумулятора авто. В том случае, если на ЗУ нет никаких индикаторов, то понять, когда аккумулятор авто заряжен, можно по показателю величины тока. В частности, если этот параметр в течение трех часов не будет изменяться, то это будет свидетельствовать о том, что батарея заряжена.

Никогда не заряжайте прибор более 24 часов, это приведет к тому, что электролит просто закипит, а внутри схемы произойдет замыкание.

Инструкция по изготовлению импульсного ЗУ своими руками

Чтобы соорудить ЗУ для аккумулятора авто своими руками, применяется схема IR2153. Данная схема отличается от схемы производства обычного ЗУ тем, что вместо двух конденсаторов, подсоединенных к средней точки, используется только один электролит. Следует отметить, что данная схема изготовления своими руками позволяет сделать ЗУ для аккумулятора авто, рассчитанное на небольшую мощность. Но и эту проблему можно решить, используя более мощные элементы.

В схеме, приведенной выше, применяются ключи типа 8N50, оборудованные изолированным корпусом. Что касается диодных мостов, то лучше использовать те, которые устанавливаются в компьютерные блоки питания. Если такого элементы схемы у вас нет, то можно попробовать собрать диодные мост из четырех выпрямительных диодов (автор видео о создании ЗУ для АКБ авто — Blaze Electronics).

Теперь перейдем к цепи питания устройства схемы. Для обустройства данного компонента своими руками применяется резистор для гашения тока, используйте устройство на 18 кОм. После резистора на схеме идет обычный выпрямительный компонент, установленный на одном диоде, при этом само питание будет в любом случае поступать на плату. Непосредственно на питании стоит электролит, которые параллельно подключен к конденсатору (этот элемент может быть либо пленочным, либо керамическим). Применение конденсатора необходимо для того, чтобы обеспечить наиболее оптимальное сглаживание импульсов и помех.

Что касается трансформатора, то его также можно демонтировать из блока питания ПК. Следует отметить, что такой трансформатор отлично подходит для создания зарядного устройства аккумулятора, поскольку он позволяет обеспечить хороший ток на выходе. Кроме того, трансформатор такого типа может обеспечить одновременно несколько параметров выходных напряжений. Сами диоды должны быть только импульсными, поскольку стандартные элементы не смогут функционировать в результате слишком высокой частоты.

Фильтр можно не добавлять в схему, но вместо него желательно установить несколько емкостей и сам дроссель. Чтобы снизить уровень бросков на входе до фильтрующего элемента, желательно добавить в схему термистор на 5 Ом. Этот элемент также можно вытащить своими руками из блока питания ПК. Важным моментом будет установка электролитического конденсатора. Его необходим подобрать, опираясь на специальное отношение 1 Ватт — 1 мкФ, уровень напряжения должен составлять 400 вольт.

В целом такая схема по своей конструкции является достаточно простой. На практике, если подойти к этому вопросу правильно, то соорудить зарядное устройство для аккумулятора своими руками будет не так сложно, даже если у вас нет опыта. А учитывая то, что у вас под рукой будет материал со всеми необходимыми схемами и обозначениями, справиться с такой задачей будет проще простого. Разумеется, если вы не можете отличить трансформатор от резистора, то лучше просто пойти в магазин и купить нужное зарядное устройство.

Видео «Изготовление импульсного зарядного устройства своими руками»

Все нюансы, которые необходимо учесть, а также подробная пошаговая инструкция по изготовления импульсного ЗУ для автомобильного АКБ, приведена ниже (автор видео — Паяльник TV).

Мощное импульсное зарядное устройство для автомобильного аккумулятора

Такой блок питания был создан после того, как сгорел мой лабораторный БП, который прослужил всего пару месяцев. Было решено из подручных средств собрать мощный сетевой ИБП, который при желании можно было использовать в качестве зарядного устройства для автомобильных аккумуляторов.

За основу была взята схема полумостового инвертора на драйвере IR2153. По идее, такой инвертор можно собрать из подручного хлама, почти все основные компоненты можно снять из компьютерного блока питания.

На входе питания собран простой сетевой фильтр, пленочные конденсаторы 0,1мкФ подобраны с рабочим напряжением 400 Вольт до и после дросселя, сам дроссель выпаян из платы компьютерного блока питания. На кольце намотаны две независимые обмотки проводом 0,9мм, количество витков каждой обмотки — 10.

Термистор на входе питания защищает полевые ключи от бросков напряжения во время включения схемы.
Диодный мост — можно взять готовый или же собрать из 4-х выпрямительных диодов с обратным напряжением не менее 400 вольт и током 1,5-3 А, в моем случае использован готовый диодный мост на 600 Вольт 4А.

От емкости электролитов зависит основная мощность, электролиты легко можно найти в любом компьютерном блоке питания. Мощность инвертора с таким раскладом компонентов составляет порядка 200ватт.

Трансформатор тоже был взят готовый, от того же компового блока питания. Поскольку ИБП должен работать в качестве лабораторного БП, то диапазон выходных напряжений должен быть широким. Трансформатор от компьютерного БП позволяет получить 24 Вольт без переделок, чего вполне достаточно для штатных радиолюбительских дел. Увеличить выходное напряжение можно двумя способами — повышением рабочей частоты генератора или же перемоткой импульсного трансформатора.

Ограничительный резистор 47К брать с мощностью 2 ватт, он обеспечивает питание микросхемы, номинал резистора может отклоняться на 10% в ту или иную сторону.
В качестве диодного выпрямителя использована мощная сборка Шоттки, которая в себе содержит два мощных диода по 30А.

После выпрямителя напряжение сглаживается конденсатором 50Вольт 1000мкФ, чего вполне достаточно, но при желании можно увеличить емкость.

Полевые ключи обязательно должны быть высоковольтными, можно использовать ключи типа IRF740/IRF840 и другие.
Хочу также заметить, что мощность такого блока питания можно поднять до 400 ватт, при этом заменяя только электролиты, крайне не советую повышать мощность более 500 ватт.

Какой же блок питания без защиты от КЗ? Изначально думал реализовать защиту в первичной цепи схемы, но это будет уже трудно настраиваемая схема, поскольку у многих возникают проблемы связанные именно с защитой, а поскольку изначально мне захотелось собрать устройство, которое бы могли повторить радиолюбители не имеющие нужного опыта работы с ИИП, то решил отказаться от идеи, этим не портить и не усложнять основную схему.

Сама защита реализована на отдельной плате, состоит из двух транзисторов. Номиналом шунта можно грубо настроить ток срабатывания защиты, номиналом переменника, можно более точно настроить на нужный ток срабатывания.

При КЗ и перегрузке блока питания, загорится индикатор и питание отключается, блок выходит из защиты моментально, при отсутствии кз или перегруза на выходе.

Полевой транзистор практически любой, с током 20-100A, можно использовать ключи типа irfz44, irfz40, irfz24, irfz46, irfz48, irf3205 и другие.
Регулятор мощности — одна из важнейших частей блока питания. За основу взял схему ШИМ регулятора, поскольку такое управление имеет очень много плюсов.

.

ШИМ — регулятор построен на таймере 555 и мощном ключе IRFZ44, напряжение плавно можно регулировать от . до максимального выходного напряжения с трансформатора.

Данный блок справляется с любыми задачами, которые могут возникнуть в радиолюбительской практике — легкий, мощный и компактный, вольт/амперметр будет цифровым, заказан отдельно на интернет магазине, будет установлен на блок в ближайшее время.

Пример импульсного зарядного устройства для автомобильного аккумулятора

Многим владельцам автомобилей знакома картина, когда они, садясь за руль, обнаруживают, что заряда аккумулятора не хватает для запуска двигателя. В такой ситуации придётся подумать о зарядки автомобильной батареи. Поэтому всегда нужно иметь под рукой зарядное устройство (ЗУ) для автомобильного аккумулятора. Тогда вы сможете в такой ситуации подзарядить севший аккумулятор и завести мотор. Если у вас ещё нет зарядки, то пора заняться её выбором. В этой статье мы поговорим об импульсных зарядных устройствах для автомобильного аккумулятора. Рассмотрим, чем они отличаются от других ЗУ и приведём несколько примеров таких устройств со схемами.

Читать еще:  Описание характеристик автомобильной магнитолы sony (сони), модельный ряд

Какие есть зарядные устройства для автомобильных аккумуляторов?

В основном ЗУ подразделяют по их назначению на 3 большие группы:

Зарядные устройства, как это понятно из названия, заряжают автомобильный аккумулятор. Пусковые модели используются, когда требуется запустить мотор. А модели пуско-зарядной группы умеют заряжать АКБ и пускать двигатель. Само собой, что для работы ЗУ требуется подключение к электрической сети. Причём пусковые и пуско-зарядные модели должны быть подключены к сети в момент запуска двигателя. Хотя есть и портативные зарядки, которые имеют свои аккумуляторы внутри, и осуществляют пуск двигателя за счёт их энергии. Такие портативные зарядки удобно брать с собой в дорогу.

Импульсные ЗУ для автомобильного аккумулятора

По конструкции зарядные устройства подразделяются на импульсные и трансформаторные. В составе трансформаторных моделей есть выпрямитель (диодный мост) и понижающий трансформатор. В конструкции инверторных зарядок работает инвертор и предусмотрена защита от короткого замыкания. Модели на основе трансформатора имеют большие размеры. Обычному пользователю рекомендуется выбирать импульсные зарядки, как более современные, компактные и лёгкие. Они стоят немного больше трансформаторных.

Пример импульсного ЗУ для аккумулятора автомобиля

Далее рассмотрена схема и принцип работы импульсного ЗУ из книги «Зарядные устройства», авторы Ходасевич А. Г. и Ходасевич Т. И. Это зарядное устройство перед тем, как проводить зарядку, разряжает АКБ до напряжения 10,5 вольта. При этом используется ток величиной С/20. С – ёмкость аккумулятора. После этого напряжение на аккумуляторе повышается до 14,2─14,5 вольта с помощью зарядно-разрядного цикла. При этом соотношение величины токов заряда и разряда составляет 10 к 1. Соотношение времени заряда и разряда равно 3 к 1. Ниже можно посмотреть основные характеристики зарядного устройства:

Характеристика Значение
Характеристика Значение
Регулируемый зарядный ток, ампер 2,5-7
Время зарядного импульса, сек 17
Время разрядного импульса, сек 5
Потребляемая мощность, ватт 30-90

Принципиальная схема импульсного ЗУ

Режимы работы ЗУ:

  • Переключатель SA3 установлен в положение «Заряд». Когда включена сетевая кнопка SA1, устройство работает, как обычная зарядка с регулируемой силой тока. Разряд при этом не выполняется;
  • Переключатель SA2 установлен в положение «Десульфатация». В этом режиме происходит заряд-разряд аккумулятора. Если нажата кнопка SB1, то перед зарядом выполняется разрядка АКБ током 2,5 ампера до напряжения 10,5 вольта. После этого аккумулятор заряжается до напряжения 14,2─14,5 вольта. По окончании процесса ЗУ автоматически отключается. Если переключатель SA3 находится в положении «Многократно», этот процесс повторяется, пока не будет прерван пользователем. Используется для восстановления аккумуляторной батареи.

Как работает устройство? На сетевой фильтр С1, С2, С3, L1 подаётся напряжение 220 вольт из бытовой электросети. Роль фильтра – это задержка помех из электросети. Далее производится выравнивание напряжения на диодах VD1, VD2, VD3, VD4 и сглаживание при помощи конденсатора C5. Роль резистора R3 заключается в ограничении зарядки конденсатора C5. U1 – это оптрон, который отвечает за контроль напряжения в сети. Когда напряжения нет, производится блокировка элемента DD2.3 и отключается режим зарядки аккумуляторной батареи.

Когда подключается аккумулятор, компаратор DA1 приходит в положение «1» и открывается транзистор VT5. В таком положении загорается светодиод HL2, сигнализирующий о включении режима «Заряд». С коллектора VT5 напряжение поступает на DD1.3 (9 вывод) и DD1.4 (13 вывод). В результате происходит разблокировка низкочастотного генератора. При этом скважность импульсов регулируется резисторами R4 (разряд) и R6 (заряд). Частота импульсов определяет ёмкость конденсатора C2.

Когда идёт заряд на выходе «10» DD1.3 устанавливается значение 1, что приводит к открытию транзистора VT1 и блокировке верхнего порога компаратора DA1 на отметке 14,2 вольта. Это объясняется тем, что сравнение напряжение на АКБ с верхний порогом выполняется в режиме разряда. Так предотвращается срабатывание компаратора в тот момент, когда батарея ещё не заряжена. Преобразователь напряжения запускается через транзистор VT2 и оптрон U2 через высокий уровень DD1.3.

Когда нажимается кнопка SB1 «Пуск», то компаратор DA1 переходит в положение «0». В результате закрывается транзистор VT5 и происходит блокировка генератора на DD1 и преобразователя напряжения. На «3» выходе DD2.1, D2.2 появляется 1. Если сетевое напряжение подано, то на входах DD2.3 устанавливается 1. На выходе DD2.4 срабатывают транзисторы VT7, VT8 и загорается светодиод HL4, который показывает «Разряд». В таком режиме устанавливается разрядный ток через лампочку HL3. Напряжение лампы 12 вольт, мощность 30 ватт.

Разряд идёт до напряжения на аккумуляторе до 10,5 вольта пока не срабатывает компаратор R20, R21, DA1. После этого на выходе DA1 снова устанавливается 1 и начинается цикл заряда. Когда напряжение батареи доходит до 14,2 вольта срабатывает компаратор R11, R14, DA1. В случае, когда переключатель SA3 был установлен в положение «Однократно», светодиод HL2 потухнет и устройство прервёт заряд. Если SA3 был установлен в «Многократно», то будет запущен новый цикл и начнётся разряд.

Конденсаторы C6, C7 защищают цепь от помех и задерживают срабатывание компараторов при переходе из одного режима в другой. Стабилизатор DA3 защищает микросхемы при кратковременном исчезновении контакта на выводах АКБ, поскольку в режиме холостого хода напряжение на выходе преобразователя подскакивает до 25 вольт.

Разработчики устройства говорят, что может потребоваться начальная регулировка пороговых компараторов. Чтобы это выполнить, делается отключение лампочек HL1, HL3 для снижения нагрузки. Затем к регулируемому блок питания подключаются клеммы X1 и X2. Напряжение блока питания выставляется 10,5 вольта и регулировкой резистора R21 добиваются того, чтобы произошло включение HL2. После этого, устанавливается напряжение 14,2 вольта и резистором R11 добиваются включения HL2. После этой регулировки подключаются лампочки и зарядное устройство для автомобильного аккумулятора готово к работе.

Теперь немного о комплектующих этого импульсного зарядного устройства. Трансформатор использован самодельный на основе дросселей телевизора УПИМЦТ, отвечающих за строчную развёртку. Трансформатор имеет следующую обмотку:

  • Обмотки I и II намотаны в два провода, а III – в семь;
  • В I обмотке 91 виток (провод ПЭВ-2, диаметр 0,5 миллиметра);
  • II обмотка имеет 4 витка аналогичного провода;
  • В III обмотке 9 витков провода ПЭВ-2 (диаметр 0,6 миллиметров).

При сборке трансформатора в сердечнике устанавливается зазор 1,3 миллиметра с помощью картонных прокладок. В роли шунта выступает нихром толщиной 0,2 миллиметра и сопротивлением 0,1 Ом. Резисторы R11 и R21 являются многооборотными (тип СП5-2). Резистор R27 относится к типу СП3-4ам.

Диоды VD13 и VD14 относятся к типу КД213А(Б). Авторы схемы рекомендуют заменить их диодами Шоттки типа КД2997А и КД2999А. Диод VD12 рассчитан на ток 2─3 ампера (30 кГц) и напряжение 600─800 вольт. Оптроны U1 и U2 относятся к типу АОТ127. Напряжение изоляции у них должно быть не меньше 500 вольт.

Сообщается, что КТ315 могут быть заменены любыми КТ312 и КТ3102, рассчитанными на 30 вольт. VT3 относится к типу КТ801 А(Б). VT7 – это тип KT819 А (Б, В). Конденсаторы на схеме:

  • C2 допускается заменить на электролитический;
  • C1, C19, C22 – тип К78-2;
  • С3, С4 – тип К15-5, напряжение не менее 600 В;
  • C5 – ёмкость 220 мкФ, 400 В. Или два по 100 мкФ, 400 вольт (тип К50-32);
  • Остальные конденсаторы на схеме относятся к типу K50-35.

Для того чтобы уменьшить размеры и массу ЗУ, авторы схемы предлагают реализовать схему охлаждения с небольшим вентилятором М1. Схема приведена ниже.

Схема охлаждения для зарядного устройства

В качестве возможной доработки также предлагается индикатор тока PA1. Это амперметр с лимитом измерений 10 ─ 0 ─ 10 ампер. То есть, зарядный и разрядный ток. Авторы предлагают использовать прибор М4761, который ранее использовался в магнитофонах. Стрелку на нём предлагается сместить в середину шкалы, чтобы был виден ток заряда и разряда.

А также можно использовать индикатор, показывающий ток на светодиодах с интервалом 0,5 ампера. Схема этого устройства показана ниже.

Схема индикатора тока для импульсного ЗУ

Преобразователь полярности и усилитель амплитуды сделаны на основе DA1 и DA2. Индикатор собран на базе DA3. Отмечается, что для этого индикатора нужно сделать дополнительный преобразователь питания на базе DA1 и DA2 (напряжение от – 15 до + 15 вольт).

В интернете и книгах можно найти большое число схем импульсных зарядных устройств для автомобильного аккумулятора. Но охватить их в рамках одной статьи невозможно.

Ссылка на основную публикацию
Adblock
detector