Как увеличить мощность дизельного двигателя?
Bis-auto.ru

Автомобильный портал

Как увеличить мощность дизельного двигателя?

Дизельный двигатель, пути повышения мощности

Первый более мене реальный двигатель внутреннего сгорания ДВС появился 1860, представил его J.J.E. Lenoir (кто изучал теорию ДВС помнят циклы Lenoir). В течение следующего десятилетия было их произведено несколько сотен. Мощность, которую они выдавали, составляла шесть л/с и его эффективность достигала 5%. 1867 году появился на свет Otto-Langen двигатель с эффективностью около 11%. Их было произведено уже несколько тысяч. Вообще Nicolaus A. Otto и Eugen Langen были в то время одними из главных изобретателей ДВС. Да их работы и посей день актуальны (так же вспоминаете Отто цикл).

Двигатели внутреннего сгорания бывают 2-х типов :

compression ignition engine (Дизельный двигатель) – возгорания происходит за счет нагрева смеси из-за сжатия.
Spark Ignition (Отто, Gas engine или бензиновый двигатель) – возгорание происходит с помощью свечи зажигания.

В 1880 году ДВС был в первые установлен именно на автомобиль. А в 1892 году Рудольф Дизель усовершенствовал свой двигатель, до состояния, как он в принципе выглядит и в настоящие дни. Это уже был compression ignition engine. Первые его эксперименты были с использованием твердых сортов топлива. Первые compression ignition engine были очень большие, шумные, медленные, одна цилиндровые, но при этом они были в те времена более эффективные чем — Spark Ignition. Развитие продолжалось и только в 1929 году, был сделан много цилиндровый, не больших размеров дизельный двигатель (не очень мне нравится это название, но это более коротко в написании) и установлен на автомобиль.

Конечно, дизельные двигатели бывают как 2, так и 4 тактные.

Процесс подачи топлива может быть:

1. prechamper process

Преимущества:
— Низкий уровень шума, когда двигатель прогрет
— Меньше нагрузка на двигатель
Недостатки:
— Шумный, когда холодный
— повышенный расход топлива

2. Direct-injection process (непосредственный впрыск)

Преимущества:
— Более экономичный
— Лучше холодный старт
— Это процесс будущего

Недостатки:
— Выше уровень шума
— Более высокая нагрузка на двигатель если подача топлива осуществляется не совсем точно (Неточности настройки и т.д. ).

Теперь не много о компрессии. Компрессия:

– или давление в камере сгорания в дизельном двигателе зависит от следующих факторов:
— Обороты двигателя
— Распредвалов
— Поступающий воздух
— Температура поступающего воздуха
— и т.д.

Примерно вот так выглядит конечная компрессия (давление в камере сгорания) и изменения температура при сжатии, как функция оборотов двигателя. Или просто – чем выше обороты, тем выше компрессия и температура.

Воздух, нагретый на такте сжатия (compression stroke) должен зажечь, воспламенить поступающее топливо. Необходимая температура воспламенения для дизельного топлива примерно 220 градусов. Это тот минимум, который необходим для работы дизельного двигателя. На высоких оборотах температура воздуха может без проблем достигать 700 градусов. Чем меньше скорость двигателя или обороты двигателя, тем меньше конечная компрессия и соответственно меньше конечная температура при сжатии (постарайтесь этот простой принцип просто запомнить, он будет важен, когда я буду описывать методы повышения мощности).

Холодный старт

Как Вы уже знаете, минимальная температура воздуха на такте сжатия должна быть 220 градусом, чтобы начался процесс само воспаления смеси. Поэтому при низкой температуре и низких оборотах мы должны впрыснуть топливо близко к пику давления в камере сгорания.

Температура сжатия воздуха для холодного старта, как функция угла коленчатого вала

Типы подачи топлива в дизельных двигателях

Я не буду расписывать все типы, виды их различия т.к. идея данного поста (конечная – как повысить мощность).

Не много о in line fuel injection pump

Такой тип используется на грузовиках Мерседес, МАН и т.д. На легковых машинах 240 300D Mercedes, C250D/C250TD Mercedes и т.д.

Наверное, так же стоит не много рассказать о современном — Common-Rail fuel injection system

Bosh “Common Rail” система подачи топлива в direct injection (прямой, непосредственный впрыск) дизельных двигателях – это невероятно высокая гибкость в адаптации системны впрыска. Используется не только на пассажирских автомобилях, но и на тяжелых грузовиках. Высокое давление впрыска – до 1400 Бар. Вариабельный старт впрыска. Вспомогательный, основной и дополнительный впрыск ( pilot injection, mian injection and post injection) Изменение, установление давления подачи топлива в зависимости от ситуации (operating mod) и т.д.

Такие системы конечно без ЭБУ уже не обойдутся. Как минимум для правильной работы необходимы данные с датчика положения коленвала, датчика положения распредвала, датчика положения педали газа, датчика давления, датчика давления топлива (pressure sesnsor), температура ОЖ, датчик массы воздуха. На последних моделях я уже встречал и датчик ЕГТ (температуры выхлопных газов).

И опять видео анимация

Турбодизель

Большинство современных дизельных двигателей оснащены различными турбинами, компрессорами. Немного о турбинах:

Non wastegate turbo. Такие турбины не могут раскрутиться более чем 100 000 оборотов. Имеют более узкий диапазон работы. Но могут быть очень эффективные, если правильно подобраны. В основном используются на грузовиках.

— Турбины с вестгейтом используются для уменьшения лага на малых оборотах и чтобы не был овербуст (контролируют максимально допустимое давление) на высоких оборотах двигателя

VNT Turbo или просто вариабельные турбины имеют широкий диапазон . наверное это будущее для дизельных двигателей

Турбина Porsche 911 Turbo.

Теперь поговорим о принципах повышения мощности на дизельных моторах. А это очень просто, правда, необходимо только увеличить подачу топлива и все, мощность растет со страшной силой. Но это только одна сторона медали. Если кто занимался настройкой бензиновых турбо моторов, то знают, как легко его положить. Так вот, при настройке дизельного мотора, это еще проще сделать (убить мотор). Моя рекомендация – если у Вас нет опыта, знаний – доверьте эту процедуру профессионалу. А я в этом посте расскажу принципы, которые помогут Вам в этой проблеме.

Для понимания я приведу различия в настройке между — compression ignition engine и Spark Ignition. Почему я использую именно эту формулировку, а не дизельный и бензиновый двигатели. Да все очень просто, и Spark Ignition двигатель работает не только на бензине, это может быть и газ, этанол, метанол да еще куча разных углеводородов, это же относится и к — compression ignition engine, он работает не только на дизеле. Но вот процессы не зависят от вида топлива, только от вида, типа ДВС (и пожалуйста, не надо указывать какие еще бывают двигатели, речь, пост не об этом.
В бензиновых ДВС наша основная задача для повышения мощности, это увеличить подачу кислорода в камеру сгорания. Для борьбы с повышением температуры в камере сгорания, ЕГТ с детонацией, (возгорания топлива на такте сжатия без помощи свечи зажигания. Мы богатим топливо воздушную смесь. Короче чем богаче смесь, тем сильнее мы охлаждаем камеру сгорания, поршня и т.д.

В дизельном моторе – чем больше мы подадим топлива, тем выше будет температура в КС. Это одно из основных отличий.
Далее, вспоминаете выше я просил Вас запомнить, что температура воздуха в конце такта сжатия в дизельном моторе повышается с повышением оборотов. Это очень важно.
Дизельные моторы работают по сравнению с бензиновыми на очень бедных смесях. Если скажем бензиновый мотор 14.7 при малых нагрузках и 12.5 для максимальной мощности, то дизельный двигатель 15.0 на малых оборотах (1000 об/мин) и 24-28.0 на 4000-4500 об/мин (сток настройки).

Теперь Вы понимаете, почему с увеличением оборотов необходимо беднить смесь. Если мы, оставим такую же АФР 15.0, как на низких оборотах, так и на высоких, у нас просто из-за сильно возросшей температуры в КС взорвется мотор.

Так что же делать. Да все просто, в этом нам поможет буст (надув). Само по себе поднятие избыточного давления только уменьшит мощность т.к. смесь станет беднее. Но вот, то, что АФР (топливо воздушная смесь) станет беднее, дает нам возможность увеличить подачу топлива и как следствие увеличение мощности.
Теперь ясно, что для увеличения мощности в дизельном моторе необходимо увеличить подачу топлива и направить все усилия, применить всевозможные способы, которые нам доступны для понижения температуры в КС. Давайте опустим моменты связанные с модернизацией системы подачи топлива, как это сделать т.к. этих систем в дизельных моторах много, следовательно, и методы, способы разные. Остановимся на принципах.
Повышение надува на 10% на сток машине, скажем для примера на VW TDI 2.0 170 сил в стоке по паспорту до 1.7 бара (избытка, не абсолютного давления) это безопасно. Мощность перед настройкой была 182 силы (это нормально для VAG машин, они часто занижают мощность). После настройки 205 сил.
Это только настройка. Что еще можно сделать? Конечно если мы говорим о серьезном тюнинге то конечно, не говоря о замене турбины, усовершенствовании системы подачи топлива, системы охлаждения двигателя (радиатор, помпа) для борьбы с температурой в КС можно использовать такие же методы которые используются в бензиновых двигателях для борьбы с детонацией :
— более производительный интеркулер
— Установка системы впрыска вода/метанол (об этой системе уже есть несколько статей)
— усовершенствование системы выпуска
— модернизация системы впуска
— подбор турбины с максимальной эффективностью под планируемую мощность.

Но самое главное – это настройка. Если при настройке бензинового двигателя в качестве индикаторов мы используем датчик детонации, АФР, ЕГТ (температура выхлопных газов) и следим онлайн за изменения мощности (реальной под нагрузкой), то для дизеля ЕГТ и АФР. Более того, когда вы настраиваете, то значения ЕГТ должны учитываться только после, как минимум 20 секундном удержании мотора под полной нагрузкой на различных оборотах. Я слышал, что некоторые настройщики добавляют смесь до той поры, пока не пойдет черный дым, а потом не много убирают – это не правильно. Если Вы настроите мотор и при этом измерения ЕГТ были произведены только при краткосрочной нагрузке, то это не факт, что температура не будет повышаться при более длительной езде при полной нагрузке. А если температура будет превышать предельные значения, то это вопрос времени что у Вас первое выйдет из строя двигатель или турбина.
В следующей статье речь пойдет о видах чип боксов (power box for diesel), что важно именно для настройки и расскажу Вам наш фирменный трюк, как мы делаем без модернизаций, на сток машинах еще плюс 10-20% мощности и это БЕЗОПАСНО.

Более подробно об увеличении мощности поговорим в следующей статье. Увеличение мощности дизельного двигателя, топливные карты

Способы повышения мощности дизелей. Турбонаддув

Из формулы для определения эффективной мощности дизеля:

можно определить способы повышения мощности. Таковыми являются:

1. Увеличение диаметра цилиндра D , целесообразно до определенного предела. С увеличением диаметра цилиндра увеличиваются инерционные силы, действующие на подвижные части дизеля, возрастают массогабаритные показатели двигателя. В настоящее время диаметр цилиндров наиболее мощных МОД достигает 105…106 см;

Читать еще:  Какие датчики влияют на обороты двигателя?

2. Увеличение хода поршня S (расширение области применения длинноходовых дизелей). Ход поршня дизельного двигателя тесно связан с диаметром цилиндра соотношением S D . Для различных классов дизелей существуют рекомендованные значения соотношения S D . Поэтому этот способ увеличения мощности непосредственно связан с предыдущим.

3. Увеличение числа цилиндров i – для этого способа увеличения мощности дизеля так же существует разумный предел. Увеличение числа цилиндров двигателя значительно усложняет его конструкцию, снижает показатели надежности. В современных дизелях число цилиндров достигает: в МОД –до 12, в СОД – до 18, в ВОД – до 50;

4. Расширение области применения двухтактных дизелей ( z =1), имеющих большие возможности по дальнейшему снижению удельных массогабаритных показателей, чем четырехтактные дизели;

5. Увеличение числа оборотов n (форсирование дизеля) – приводит к значительному снижению ресурсных показателей двигателя, особенно у ВОД (высокооборотный двигатель);

6. Повышение среднего эффективного давления pe за счет увеличения плотности воздуха, вводимого в цилиндр.

Последний способ является наиболее эффективным и получил наименование «наддува дизеля». Использование наддува дает возможность в несколько раз (4 ÷ 5) увеличить удельную мощность двигателя без изменения его основных размеров только за счет повышения давления наддувочного воздуха – pК , и надлежащего его охлаждения.

Наддув дизеля может осуществляться следующими способами: механическим, газотурбинным и комбинированным.

При механическом наддуве нагнетатель поршневого, ротативного или центробежного типа приводится в действие от коленчатого вала двигателя. Применение механического наддува влечет за собой потерю мощности двигателя на привод компрессора, которая может достигать 7 ÷ 10 % от эффективной мощности двигателя. В чистом виде механический наддув в современных дизелях, как правило, не применяется.

В настоящее время в двух- и четырехтактных дизелях применяют газотурбинный наддув. Он может осуществляться следующими способами:

— турбонаддув с изобарной турбиной : при этом способе наддува выхлопные газы собираются в выхлопном коллекторе. В коллекторе происходит выравнивание давления газов и поля скоростей. Из выхлопного коллектора при постоянном давлении газы подаются на рабочие лопатки газовой турбины, приводящей во вращение компрессор;

— турбонаддув с импульсной турбиной: при таком способе наддува используется кинетическая энергия газов в виде импульсов в периоды свободного выпуска. Соединительные трубы между выпускными окнами или клапанами и газовыми турбинами делаются как можно короче с целью уменьшения дросселирования газов в выхлопном патрубке и максимального сохранения их кинетической и тепловой энергии.

Рабочий цикл дизельного двигателя без наддува состоит из следующих термодинамических процессов (рис. 27):

Рабочий цикл дизеля с изобарным наддувом состоит из следующих термодинамических процессов (рис. 28):

  • 1− 2 – адиабатное сжатие воздуха в рабочем цилиндре двигателя;
  • 2 − 3 – изохорный подвод тепла Q1′ в цилиндре при сжигании части топлива в конце такта сжатия;
  • 3 − 4 – изобарный подвод тепла Q 1′′ при сжигании части топлива в начале такта расширения;
  • 4 − 5 – адиабатное расширение газов в цилиндре двигателя;
  • 5 −1 – изохорный отвод тепла в газовыхлопной коллектор;
  • 9 − 6 – изобарный подвод теплоты Q2 к рабочему телу (выравнивание давлений газов в коллекторе перед подачей их в изобарную турбину);
  • 6 − 7 – адиабатное расширение газов в газовой турбине;
  • 7 − 8 – изобарный отвод теплоты Q2′ к холодному источнику (выброс выхлопных газов в атмосферу;
  • 8 − 9 – адиабатное сжатие воздуха в турбокомпрессоре;
  • 9 −1 – изобарный отвод теплоты Q2′′ в охладителе надувочного воздуха

Площадь фигуры a − 6 − 7 − b на диаграмме численно равна работе, совершаемой при расширении газов в газовой турбине. Площадь фигуры a − 9 − 8 − b численно равна работе, затраченной на сжатие воздуха в компрессоре. Площадь, ограниченная фигурой 6 − 7 − 8 − 9 численно равна полезной работе, полученной при использовании турбокомпрессора (приращение полезной работы цикла с изобарной турбиной).

Термодинамический цикл дизеля с импульсным наддувом, в отличие от изобарного, имеет следующие особенности (рис. 29):

  • 5 − 6 – продукты сгорания, совершив работу расширения в цилиндре двигателя, без потерь поступают в газовую турбину, где продолжается их дальнейшее расширение;
  • 6 − 7 – изобарный отвод теплоты Q′2 от продуктов сгорания к холодному источнику (выброс газов в атмосферу);
  • 7 − 8 – адиабатное сжатие воздуха в турбокомпрессоре;
  • 8 −1 – изобарный отвод теплоты Q′′2 от сжатого воздуха в воздухоохладителе.

Площадь диаграммы a − 5 − 6 − b численно равна работе, совершаемой газами в газовой турбине; площадь диаграммы c − 8 − 7 − b – работе сжатия компрессора. Площадь фигуры 1 − 5 − 6 − 7 − 8 численно равна полезной работе турбокомпрессора с импульсной турбиной (приращение полезной работы цикла с импульсной турбиной).

Применение газотурбинного наддува дизельного двигателя позволяет:

  • — наиболее полно использовать тепловую и кинетическую энергию продуктов сгорания, покидающих цилиндры двигателя (т.е уменьшить потери с уходящими газами QГ – самую большую составляющую тепловых потерь дизельного двигателя);
  • — без дополнительных затрат энергии осуществить сжатие воздуха, подаваемого в цилиндры двигателя, что в свою очередь повышает среднее эффективное давление и, соответственно, мощность дизеля;
  • — за счет использования перечисленных мероприятий повысить общий КПД дизельной энергетической установки.

Основные компоновочные схемы дизельных двигателей с наддувом

Все компоновочные схемы судовых дизельных установок с наддувом можно разделить на три большие группы:

  • схемы наддува с механической связью между поршневым двигателем и наддувочным агрегатом (схемы с подключенным турбокомпрессором);
  • схемы наддува с газовой связью (со свободным турбокомпрессором);
  • комбинированые схемы наддува , включающие сочетания механической и газовой связи, либо использование различных способов газотурбинного наддува (изобарный и импульсный наддувы).

Ниже рассмотрены наиболее часто применяемые схемы осуществления механического, газового и комбинированного наддува дизелей, их особенности, преимущества и недостатки.

Схема наддува с механической связью

В схеме наддува с механической связью (рис. 31.а) компрессор приводится в действие непосредственно от коленчатого вала дизеля через повышающую механическую передачу – мультипликатор. Сжатый в компрессоре воздух поступает в воздухоохладитель, где от него отводится часть теплоты (повышается плотность заряда воздуха), и затем направляется в наддувочный ресивер двигателя.

Основным недостатком схемы является тот факт, что на привод компрессора затрачивается значительная часть мощности (от 7 до 10 %), полученной в рабочих цилиндрах двигателя (потери N К ). Это в свою очередь приводит к некоторому снижению мощности двигателя и его экономичности. Такая схема обычно применяется в дизелях с низкой степенью наддува, а также в двухтактных дизелях без наддува.

Схема наддува с газовой связью (импульсная турбина)

В данной схеме наддува (рис. 31.б) продукты сгорания из двигателя по коротким патрубкам направляются в импульсную газовую турбину, где продолжается их расширение. Газовая турбина преобразует энергию газов в механическую работу и передает ее компрессору, находящемуся с ней на одном валу. При использовании схемы с чисто газовой связью мощность, полученная в турбине, на всех режимах работы равна мощности компрессора. Как и в предыдущей схеме, воздух, сжатый в компрессоре, через воздухоохладитель поступает в наддувочный ресивер двигателя.

Основными преимуществами рассмотренной схемы являются: простота конструкции, небольшие габариты турбокомпрессора, автоматическая газовая связь между нагрузкой двигателя, частотой вращения турбины и параметрами наддувочного воздуха. Недостатком схемы (по сравнению со схемой с механической связью) является ухудшение пусковых качеств дизелей, так как в начальный момент пуска дизеля турбина не работает.

Схема наддува с комбинированной связью

В рассматриваемой схеме наддува (рис. 31.в) турбоагрегат частично снимает мощность с коленчатого вала двигателя через мультипликатор, и частично – с вала импульсной газовой турбины. Причем на мощностях двигателя, близких к полным, работа турбокомпрессора обеспечивается только за счет мощности, вырабатываемой газовой турбиной, а на малых мощностях и в пусковых режимах бóльшая часть мощности отбирается от коленчатого вала двигателя. Данная схема обеспечивает хорошие пусковые качества дизеля и возможность форсирования двигателя по наддуву. Недостатками схемы являются усложнение дизеля за счет применения повышающей передачи – мультипликатора, и связанные с механической передачей дополнительные потери на привод компрессора на малых нагрузках двигателя.

Схема с изобарным наддувом

В этой схеме наддува (рис. 31.г) отработавшие газы из цилиндров двигателя выходят в выпускной коллектор, где выравнивается поле скоростей и давлений газов, а затем, практически при постоянном давлении, поступают в изобарную газовую турбину. Газовая турбина передает мощность компрессору, осуществляющему сжатие воздуха и находящемуся с ней на одном валу. Сжатый воздух через охладитель направляется в наддувочный ресивер двигателя.

При использовании чисто изобарного наддува на режимах малых нагрузок двигателя турбокомпрессор не обеспечивает потребный расход воздуха. На этих режимах работы двигателя дополнительно включаются в работу электроприводные компрессоры, специально установленные на дизеле.

Схема двухступенчатого комбинированного наддува

В рассматриваемой схеме наддува (рис. 31.д) продукты сгорания из цилиндров дизеля сначала направляются в импульсную газовую турбину, где происходит преобразование энергии газов в механическую работу вращения ротора турбины, а затем в выхлопной коллектор дизеля, где происходит выравнивание давления газов. Из выхлопного коллектора продукты сгорания поступают на рабочие лопатки изобарной газовой турбины, отдают ей свою энергию и выбрасываются в атмосферу. Мощность, вырабатываемая импульсной газовой турбиной, передается компрессору второй ступени сжатия, мощность изобарной турбины – компрессору первой ступени сжатия. Воздух из атмосферы поступает в компрессор первой ступени сжатия, охлаждается в промежуточном охладителе, досжимается в компрессоре второй ступени сжатия, и через воздухоохладитель поступает в наддувочный ресивер дизеля.

Такие схемы используются при высокой степени наддува с целью повышения показателей экономичности дизеля за счет более эффективного использования энергии газов а также более высоких КПД газовых турбин.

Схема наддува с использованием подпоршневых полостей

В малооборотных крейцкопфных дизелях в качестве приводного компрессора нередко используют подпоршневые полости цилиндров. В этом случае воздух, сжатый в основном турбокомпрессоре, приводимом в действие изобарной газовой турбиной, через охладитель поступает в герметичный картер двигателя к подпоршневым полостям (рис. 31.е). При движении поршня от ВМТ к НМТ воздух дополнительно сжимается и направляется в наддувочный ресивер дизеля.

При такой схеме наддува часть мощности двигателя тратится на сжатие воздуха в подпоршневых полостях.

В некоторых случаях могут использоваться и более «экзотические» схемы наддува. Например, в конструкции дизельного двигателя японской фирмы ххххххх для наддува могут использоваться часть рабочих цилиндров двигателя. При работе двигателя на частичных нагрузках часть цилиндров отключается от топливной системы, и они используются в роли компрессорных цилиндров.

Литература

Судовые энергетические установки. Дизельные и газотурбинные установки. Болдырев О.Н. [2003]

Увеличение мощности дизельных двигателей

На сегодняшний день есть несколько простых способов увеличения мощности дизельного двигателя − это чип-тюнинг (перепрошивка блока ЭБУ) и установка специального блока увеличения мощности параллельно блоку ЭБУ.

Чип-тюнинг в данной статье не рассматривается, так как по поводу данного метода проводились независимые исследования. Было доказано, что данный способ увеличения мощности существенно снижает срок службы дизельного двигателя и негативно влияет на стабильность работы всей системы в целом. Если провести сравнение с организмом человека, то чип-тюнинг − это как прием анаболических стероидов, которые дают отменный результат, но при этом непрогнозируемый исход для организма: может повезти и всё будет нормально, а может и не повезти − последствия будут плачевными. То же и с чип-тюнингом: результат будет, но какой ценой?! В связи с этим мы опишем единственно безопасный на сегодняшний день способ увеличения мощности − с помощью специальных модулей/блоков.

Читать еще:  Почему долго крутит стартер при запуске двигателя?

В процессе написания и анализа российского рынка блоков увеличения мощности дизельных двигателей была отмечена слабая техническая и информационная поддержка от фирм, занимающихся продажей данных устройств. Дело в том, что огромное количество сайтов унифицировано «дергает» описание работы устройств друг у друга, пытаясь внести новое свойство своему продукту лишь только на словах. Главное, никого не смущает гибкая конвертабельность таких устройств между применением в обычном атмосферном дизельном двигателе с рядным ТНВД с системами common rail. Также эти интернет-магазины не открывают истинных принципов работы своих модулей. Так вот, наших читателей мы не считаем людьми, готовыми купить любой продукт с минимальным набором таких свойств, как, например «Сделано в Германии», «Одобрено Евросоюзом», «Проверено нашими специалистами», «Продукт месяца» или «Только у нас».

Мы попробуем рассказать о разновидностях таких блоков и приоткрыть завесу тайн, которая над этим всем стоит. После прочтения данной статьи для полного понимания принципов работы всех блоков увеличения мощности, мы рекомендуем ознакомиться со статьей, которая описывает принцип работы современного дизельного двигателя с аккумуляторной топливной системой common rail.

РАЗНОВИДНОСТЬ СПОСОБОВ УВЕЛИЧЕНИЯ МОЩНОСТИ ДИЗЕЛЬНОГО ДВИГАТЕЛЯ

На сегодняшний день нет возможности перепрограммировать рабочую вычислительную матрицу в ЭБУ дизельного двигателя, так как ЭБУ дизельного двигателя самостоятельно рассчитывает значения режимов, постоянно собирая и анализируя информацию с внешних датчиков. Есть определенные условия, при которых происходит вмешательство непосредственно в сам ЦП ЭБУ, для изменения величины стехиометрической величины, но такое вмешательство чревато серьезными последствиями. Такой вид увеличения мощности − удел недобросовестных сервисных центров и отчаявшихся автолюбителей. Есть и другие методы, которые мы подробно обсудим, это так называемы боксы или модули увеличения мощности. На сегодняшний день на мировом рынке существует четыре типа блоков:

1) Блок изменения импульсов управления форсунками;

2) Блок замещения режимов работы ТНВД;

3) Блок изменения показаний датчика давления топливного аккумулятора «топливной рейки»;

4) Модуль оптимизации режимов работы центрального процессора ЭБУ.

Давайте принципиально рассмотрим каждый.

1-й тип: «Блок изменения импульсов управления форсунками»

Самый распространенный тип блоков, встречается в 90% случаев. В данном случае используется способность блока изменять время (задержка, опережение) управляющего тока, который непосредственно участвует в открытии «иглы» форсунки. Таким образом, происходит прямое вмешательство в работу исполнительного каскада топливной системы. На первый взгляд, такая возможность увеличения мощности двигателя может показаться безобидным вмешательством. На самом же деле, это самый распространенный и далеко не безобидный метод. Установка блока происходит в разрыв управляющих проводов топливного инжектора. На простой элементной базе происходит задержка сигнала, что, в свою очередь, приводит к изменению угла впрыска, а экономия топлива происходит из того, что кратковременный импульс, посылаемый для предварительного открытия и после открытия (время такого импульса не более 0,0002 сек.), не улавливается блоком, а просто блокируется. Такие блоки не имеют своих высоковольтных каскадов для посылки импульса, поэтому возможности к трансляции кратковременных (не основных) импульсов у них невозможны.

Плюсы. Возможность установить на любой дизельный двигатель с электронной системой впрыска. Экономия топлива. Доступная элементная база, что снижает себестоимость в изготовлении. Универсальность в применении. Экономия топлива.

Минусы. Несоизмеримо высокая цена исходя из реальной стоимости компонентов. Экономия топлива за счет исключения из работы важных цикловых подач топлива, что снижает общий ресурс двигателя. Быстрый выход из строя сажевого фильтра, который связан с отсутствием импульса правильного сгорания топлива. Повышение эмиссии вредных веществ. Возможность проследить работу сервисной кампанией, после просмотра и изучения составления стехиометрической смеси и реального состояния всей выхлопной системы. Не быстрая установка.

Бренды: TuningBox, Power-Box, R-Box (использует одновременно технологии 1-го и 3-го типа), TBS, TUNIT (одна из модификаций), RedBOX, BlueBOX, GreenBOX, HOPA (использует одновременно технологии 1-го и 3-го типа), FGS-BOX.

2-й тип: «Блок замещения режимов работы ТНВД»

Такой тип увеличения мощности используется на переходных дизельных системах высокого давления. В основном это дизельные двигатели с насосом BOSCHVP 44 до 2008 года выпуска. В системе такого автомобиля не присутствует общая рампа высокого давления, аккумуляция высокого давления происходит непосредственно в самом насосе. Такой принцип работы не позволяет реализовать на топливном инжекторе более двух впрысков за такт. В таких системах используются электрогидравлические форсунки. Установка блока происходит в разрыв шины данных насоса ТНВД и ЭБУ. На элементарном уровне происходит занижение показаний датчика давления топлива, что, свою очередь, приводит к поднятию давления в корпусе насоса. В такой схеме управление давлением осуществляется при помощи электромагнитного клапана, который работает вне номинальных режимов и снижает общий ресурс ТНВД.

Плюсы. Увеличение мощности двигателя без снижения ресурса блока цилиндров. Нет прямого воздействия на количество эмиссии вредных веществ. Отсутствует возможность проследить установку со стороны сервисной кампании. Простая и недорогая элементная база. Быстрая установка. Экономия топлива.

Минусы. Снижение ресурса ТНВД. Снижение общего ресурса электромагнитной форсунки, за счет повышенного давления в магистрали. Плавающие обороты двигателя за счет постоянного повышенного давления в ТНВД даже на холостом ходу. После¬эксплуатационное дымление из выхлопной трубы. Бренды: TUNIT (одна из модификаций).

3-й тип: «Блок изменения показаний датчика давления топливного аккумулятора» В этом случае используется способ занижения показаний датчика давления топливного аккумулятора. Принципиальная схема такого вида вмешательства основана на электронной элементной базе аналогового вида, где процесс количества влияния на канал данных выбирается подстрочным резистором для оптимальной работы двигателя. Блок устанавливается в разрыв информационной шины датчика давления. Давление топлива в аккумуляторе поддерживается ТНВД всегда в номинальных пределах. Скорость реакции ЭБУ на любое изменение в топливном аккумуляторе мгновенно, ведь от информации о правильном давлении в аккумуляторе зависит точный расчет цикла открытия форсунки. Так вот, блок увеличения мощности использует возможность постоянной замены информации в канале данных о давлении. [info] Блок ЭБУ не выводит ошибку на табло приборов, так как дефектный сигнал вносит в электронную схему заниженное давление в рейке, но не ниже номинального значения, поэтому на таких боксах стоит потенциометр, которым опытным путем и выбирается минимально заниженное значение, при котором система не выдаст ошибку. Вследствие этого ЭБУ рассчитывает иной тайминг впрыска для двигателя, как будто (судя по информации от датчика давления) ТНВД потихоньку теряет свою мощность. Эффект экономии топлива и прирост мощности достигается за счет того, что циклы дополнительного и последующего впрысков не вносятся во все режимы работы двигателя. То есть продолжительность открытия форсунки увеличивается в момент главного впрыска, за счет исключения из расчетов всех остальных. В этой схеме, по аналогии с первой, используется та же разновидность подмены сигнала, только в первом описываемом способе идет замещение импульсного сигнала, а в этом происходит влияние на канал данных от датчика, что, в свою очередь, понижает выводимый сигнал до низкого значения.

Плюсы. Доступная недорогая элементная база и возможность самостоятельной сборки. Минимальное количество элементов и простота электрической схемы увеличивают надежность устройства. Быстрый монтаж. Не прослеживается использование сервисными организациями. Экономия топлива. Доступно везде к приобретению.

Минусы. Исключение из работы инжекторов дополнительного впрыска быстро выводит из строя сажевый фильтр или систему эмиссии отработанных газов. Заниженные показания давления выводят работу форсунок на перелив, что в будущем приводит к дымлению двигателя. Системы с электронной регулировкой давления ТНВД на привод подают больший крутящий момент, что неминуемо ведёт к быстрому износу насоса. Количество недовпрыскиваемого топлива со временем пропорционально количеству нагара на стенках цилиндра за счет постоянного, неправильного и бесконтрольного процесса сжигаемости горючей смеси.

Бренды: R-Box (использует одновременно технологии 1-го и 3-го типа), HOPA (использует одновременно технологии 1-го и 3-го типа), Spider.

4-й тип: «Модуль оптимизации режимов работы центрального процессора ЭБУ»

На сегодняшний день это самый современный метод. Работа модуля использует канал данных, благодаря которому возможно воздействовать на процесс расчета тайминга топливного инжектора ЦП. Если говорить подробнее, то в блоке стоит вычислительный модуль с программным обеспечением, который посылает в блок ЭБУ импульсный сигнал, позволяющий, не влияя и не меняя показаний любых основных датчиков, заставить увеличить тайминг форсунок на необходимое время, которое не превышает нормальных временных и запрограммированных величин. Так вот, ограничение воздействия на систему в целом происходит не выше рассчитанных временных характеристик. Установка модуля происходит в систему высокого давления. Модуль использует информацию с датчика давления и понимает, в каком на данном этапе работы находится двигатель. Иными словами, резкий всплеск давления понимается блоком, что необходимо увеличить подачу топлива. Плавный подъем давления говорит об отсутствии необходимости вмешательства в работу двигателя. Сложная программная база позволила использовать самостоятельное принятие решений модулем для исключения корректировки штатных параметров ЭБУ. Блок использует параллельный канал данных для доступа к логическому модулю ЭБУ.

Плюсы. Безопасен для двигателя. Нет аналоговой схема управления, внедренное программное обеспечение гарантирует исключение пропуска циклов подачи топлива. Быстрая и простая установка. В процессе работы нет ни одного сигнала, который видоизменяется, то есть не используется изменение или подмена сигнала с любого датчика. Возможность установить на любую систему commonrailс топливным аккумулятором (необходима перепрошивка). Работа модуля не влияет на систему ОГ в целом. Работа модуля не использует поднятие давления в топливной рейке. Цифровая схема управления. Соединение модуля не происходит в разрыв информационной линии датчиков.

Минусы. Высокая себестоимость изготовления, что и является причиной высокой стоимости устройства. Поддерживается ограниченный модельный ряд автомобилей. Нет моментального эффекта для получения максимальных показателей необходимо проехать минимум 500 километров для обучения модуля.

На сегодняшний день безопасным устройством увеличения мощности дизельных двигателей с аккумулятором высокого давления можно считать только блоки четвертого типа. Только они являются современным, безопасным и интеллектуальным способом увеличения мощности. Есть только один момент: это ограниченность ассортимента модельного ряда поддерживаемых автомобилей в связи с тем, что данные блоки появились на рынке не так давно.

16 способов увеличить мощность двигателя

Как добавить лошадиных сил своему автомобилю?

«Дурь водителя прямо пропорциональна мощности двигателя»

Идею материала подсказала голова неизвестного посетителя, появившаяся в двери. Голова осмотрелась, поздоровалась и изрекла следующее:

— Ребята! А вот как повысить мощность двигателя?

Несколько фраз про степень сжатия и полноту сгорания быстро заставили голову исчезнуть. А у нас в итоге появился вот такой материал. На тот случай, если голова появится снова…

Откуда берется мощность?

Для того чтобы поднять мощность двигателя внутреннего сгорания, есть два пути. Нужно либо заставить топливо работать эффективнее, либо увеличить его потребление. Других путей не существует, поскольку всю свою энергию ДВС черпает исключительно из бензина или дизтоплива. Остается распорядиться энергией сгорания как можно эффективнее.

Снижаем механические потери

Никакой двигатель не выдаст полную мощность, если значительная часть энергии будет уходить на преодоление механических потерь. Избавиться от них полностью невозможно, а вот снизить — реально. Именно с этой целью двигателестроители стали применять облегченные поршни и шатуны, сохраняя их исходную размерность. Такие комплекты для моторов зачастую продаются — тюнингисты этим охотно пользуются. Моторчику становится легче раскручивать массивные детали.

Читать еще:  Для чего делают раскоксовку двигателя?

Уменьшаем сопротивление на входе

Без воздуха ДВС мгновенно заглохнет — это понятно. А поскольку добраться до камер сгорания воздуху не очень просто, стоит облегчить ему жизнь. Путей несколько — установить воздушный фильтр нулевого сопротивления, отполировать каналы впускного трубопровода. Сразу отметим, что трубопроводы нынче, в основном, делают из пластика, а потому там много не наполируешь. Да и «нулевик» на входе не подарок. Пусть его сопротивление меньше, чем у штатного фильтра, а потому он не так сильно душит мотор, но это достигается худшей фильтрующей способностью. Иными словами — меньше сопротивление, но больше грязи. Кстати, на двигателях водного транспорта такой проблемы нет…

Повышаем степень сжатия

Чем выше степень сжатия, то есть отношение объема цилиндра к объему камеры сгорания, тем выше его мощность — это азбука. Но просто так степень сжатия не поднять: потребуется механическое вмешательство. Типичные пути — подрезать головку блока цилиндров, применить более тонкую прокладку и т.п.

Увеличиваем рабочий объем

Это еще одна страничка азбуки: чем больше литраж мотора, тем больше от него можно требовать. А увеличить объем можно двумя путями: увеличением хода поршня и диаметра цилиндра.

Наддуваем

Чтобы увеличить количество сгораемого топлива, нужно добавить воздух, а для этого применяют наддув. Способов много — турбокомпрессор, приводные нагнетатели разных типов. Если компрессор на машине уже есть, то его можно попытаться немножко «дожать» — разумеется, в разумных пределах, а то он разнесет все на свете.

Охлаждаем наддувочный воздух

Если воздух, нагретый компрессором, пропустить через интеркулер, то его плотность вырастет, а потому наполнение цилиндров улучшится.

Нагреваем мотор

Чем выше температура ДВС, тем выше его КПД. Понятно, что перегрев — штука опасная, но если поиграть с температурой в небольших пределах (скажем, регулировкой термостата), то можно чего-то добиться. Кстати, той же цели в свое время добивались, отказываясь от приводного вентилятора системы охлаждения в пользу электрического. Тот крутился не постоянно, а только при необходимости, значительно ускоряя прогрев мотора и несколько увеличивая его КПД.

Простейший путь к увеличению мощности — переход на высокооктановый бензин: если, конечно, мотор на него рассчитан. Чем выше октан, тем больше угол опережения зажигания — контроллер введет необходимые поправки, и ваша мощность чуть-чуть подпрыгнет. Любопытно, что большинство представителей нефтехимических компаний сегодня дружно ратуют за безоговорочный переход на 98-й безо всяких «если» — мол, будет только лучше. А если бензин — с улучшенной моющей способностью, то и подавно.

Масло

С маслом все просто. Менее вязкое масло априори сулит меньшее трение, а потому на предельных режимах моторчик сможет выдавить из себя лишнюю лошадиную силу…

Закись азота (NOS)

Закись азота ( N2O ) при нагревании распадается на кислород и азот. Поэтому во время сгорания топливно-воздушной смеси становится доступным больше кислорода — около 31%, против 21% в обычном воздухе. Это позволяет добавить побольше горючего, выжимая из мотора лишние силы. Кроме того, когда эта закись испаряется, она обеспечивает охлаждение всасываемого воздуха. Плотность растет, кислорода становится больше — и так далее. На практике запаса этой закиси обычно хватает на несколько секунд работы. А ресурс мотора гробится в несколько раз.

Чип-тюнинг

Самое популярное развлечение тюнингистов. Мотор вскрывать не надо, а мощность может вырасти… Обычно увеличивают подачу топлива, добавляя мощность, но ухудшая экологию.

Наращиваем обороты

Разблокировав электронный ограничитель частоты вращения двигателя, обычно можно поднять мощность на самом пике оборотов. Когда-то безнаддувная Хонда выдавала 160 л.с. с 1,6-литрового двигателя. Как? Да просто двигатель крутился почти до 8000 об/мин — почти как на мотоцикле.

Комплектующие

Давно известно, что свечи зажигания, фильтры, высоковольтные провода и прочие комплектующие разных производителей способны выдавать несколько лучшие показатели по сравнению с «серой массой». А если применить всё и сразу? Когда-то мы поставили такой эксперимент на вазовском моторе, заменив все указанные комплектующие на победителей зарулевских экспертиз. Что ж, мощность реально поднялась — до 4–5%! Однако чем выше рейтинг комплектующих, применяемых на конвейере, тем меньшего эффекта можно будет добиться.

Присадки

Присадочники любят обещать сумасшедшие проценты от применения своих снадобий. Зарулевские экспертизы разных лет обычно показывали более скромные результаты — в пределах единиц процентов. А ученые, именующие себя трибологами, всегда утверждали, что применение таких средств нуждается в строго научном подходе. Будем считать, что они правы.

Плюнуть на экологию

Известнейший способ подъема мощности — удалить из автомобиля всевозможные нейтрализаторы, поставить глушитель типа прямоток «самоварная труба», применить извращенный чип-тюнинг, позволяющий увеличить подачу топлива… Рекламировать подобный путь не хотим: просто укажем, что многие нехорошие люди им пользуются.

Омагничиватели и одурачиватели

Способ, дающий огромный прирост мощности — до 50%, а то и более. Во всяком случае, продавцы и производители жонглируют именно такими цифрами. Недостаток тоже известен: на практике ничего такого не получается. Но вера творит чудеса…

Если мы упустили какой-то из приемов увеличения мощности — предложите свой. Удачного пути, независимо от киловаттов и лошадей под капотом!

Как увеличить мощность дизельного двигателя

Идея создать мощный двигатель привлекательна для многих автовладельцев. Сильный мотор позволяет быстро набрать скорость и влиться в общий поток. В любой момент, при необходимости, легко совершить динамичный манёвр и оставить позади более дорогую иномарку. Такие моменты дарят множество ни с чем не сравнимых ощущений.

Тюнинг двигателя помогает добиться значительного прироста в динамике автомобиля. Если грамотно подойти к этой задаче, получится раскрыть весь потенциал мотора. В этой статье речь пойдёт о том, как увеличить мощность дизельного двигателя. Описанные методы помогают усовершенствовать силовой агрегат и добиться реального результата. Но прежде чем приступить к тюнингу, изучите принципы работы дизельных моторов.

Как работает дизельный двигатель

Топливная смесь. Особенностью дизельного двигателя является способ образования и воспламенения смеси. Сначала в цилиндр поступает воздух, а затем поршень его сжимает. В определённый момент через форсунку подаётся топливо. От высокой температуры сжатого воздуха, оно воспламеняется в цилиндре.

Система питания. Это главное звено в дизельном двигателе, которое обеспечивает подачу необходимой порции топлива в камеру сгорания в точно определённый момент и с нужным давлением. Система питания бывает двух типов: механическая и электронная.

Механической оснащались старые образцы двигателей. Особенностью этой системы является ТНВД, нагнетающий топливо к форсункам. Мощность впрыска зависит от частоты вращения коленчатого вала. Некоторые из описанных способов тюнинга не подходят для таких двигателей.

Современные автомобили оснащаются электронной системой питания. Топливо с помощью ТНВД нагнетается в рампу, а затем впрыскивается электромагнитными форсунками. Дозировку, давление и момент впрыска контролирует электронный блок управления. Изменив его работу, можно легко улучшить динамику двигателя. Именно такие моторы подходят для тюнинга.

Как увеличить мощность дизельного двигателя

Увеличение мощности зависит от качества сгорания смеси. Высокое давление и отрегулированный впрыск помогают топливу полностью сгореть и выделить максимум полезной энергии. Благодаря балансу между количеством воздуха и топливом получается существенно повысить мощностные характеристики мотора.

У тюнинговщиков дизельных двигателей имеются несколько вариантов улучшения динамики: чип-тюнинг, установка модуля увеличения мощности, турбонаддув.

Чип-тюнинг
Самый простой способ увеличить мощность двигателя. Этот метод заключается в изменении настроек ЭБУ. Такую процедуру должен проводить специалист, который имеет необходимый для работы технический инструмент и специальное программное обеспечение.

Как осуществляется прирост динамики? Электронная система подачи топлива управляется ЭБУ. Этот блок содержит в себе микропроцессор, который контролирует объём воздуха, впрыск, обороты коленчатого вала. ЭБУ взаимодействует с различными датчиками, получая информацию о состоянии двигателя. Учитывая данные, меняет режим работы силового агрегата. Перепрошивка блока управления помогает улучшить динамику.

  • уменьшается расход топлива;
  • повышается динамики мотора;
  • убирается ограничение максимальной скорости;
  • исчезает провал в работе ДВС после нажатия педали газа.
  • изменение настроек приводит к потере гарантии, если автомобиль новый;
  • процедура перепрошивания ЭБУ связана с риском – последствия не обратимы.

Модули увеличения мощности
Являются популярными средствами увеличения мощностных характеристик дизельного мотора. Это специальные модули, которые взаимодействуют с системой топливного питания. Они не вмешиваются в работу ЭБУ, а параллельно с ним контролируют различные электронные датчики. Процедура установки несложная просто следуйте вложенной инструкции.

Существует четыре вида модулей

  1. Модуль изменения импульсов управления форсунками. Контролирует активность работы форсунок — замедляет или задерживает поднятие иглы. В результате меняется угол опережения зажигания, увеличивается эффективность сгорания топлива, уменьшается расход. Модуль подсоединяется к проводам форсунок. Подходит к любым дизельным моторам, имеющие современную топливную систему питания.
  2. Модуль изменения режима работы ТНВД. Взаимодействует с датчиком давления топлива. Получает от него информацию и занижает показания. В результате в насосе увеличивается давление. Это позволяет повысить динамику двигателя без ущерба для ресурса. Модуль подсоединяется к проводам ТНВД и ЭБУ. Подходит к дизельным моторам с механической системой подачи топлива, выпущенных до 2008 г.
  3. Модуль изменения показаний датчика давления топливной рампы. Обманывает ЭБУ, сообщая ему о понижении давления в топливной рампе. В результате блок управления думает, что динамика двигателя упала и решает поменять интенсивность работы форсунок. Это уменьшает расход, и повышает мощность. Модуль подсоединяется к проводам датчика давления рампы. Подходит для моторов, имеющих современную систему подачи топлива.
  4. Модуль оптимизации режимов работы центрального процессора ЭБУ. Определяет давление топливной системы. Если оно возрастает, отправляет сигнал в ЭБУ, чтобы увеличить тайминг форсунок. Встроенная программа корректирует работу двигателя без помощи ЭБУ. Не занижает показания датчиков. Модуль встраивается в систему высокого давления. Подходит для всех современных дизельных моторов.
  • повышают мощность двигателя;
  • уменьшают расход топлива;
  • устанавливаются быстро и легко.
  • уменьшают ресурс блока цилиндра;
  • сокращают срок службы ТНВД и форсунок;
  • повышают выброс вредных веществ.

Турбонаддув
Турбина, значительно повышает мощь двигателя. Она нагнетает много воздуха в цилиндр, а электронная система увеличивает количество подаваемого топлива. Поток отработавших выхлопных газов раскручивает турбину с низких оборотов двигателя. Благодаря этому исчезают турбо-лаги. Тяга мотора увеличивается с низов.

Дизельные двигатели имеют особенность — отсутствие дросселя. Поэтому воздух быстро нагнетается в цилиндры, бес помощи сложных систем управления турбиной. Для того чтобы не перегреть двигатель ставят интеркулер. Это устройство охлаждает закачиваемый в цилиндр воздух.

  • эффективно сгорает топливная смесь;
  • значительно возрастает мощность двигателя.
  • небольшой срок службы;
  • увеличенный расход топлива;
  • высокая стоимость качественной турбины;
  • обязательное применение дорогостоящего масла и высокооктанового топлива.

Описанные методы повышения мощности дизельного мотора, помогут сделать автомобиль быстрым. Самым простым способом является установка дополнительных модулей. Но помните, о том, что увеличивая динамику двигателя, сокращаете его ресурс. Кроме того, быстрая езда потребует дополнительные расходы. Вам придётся потратиться на установку надёжных тормозов. Прежде чем тюнинговать двигатель, сначала хорошо подумайте, действительно ли вам нужна эта мощность.

Видео: как увеличить мощность любого автомобиля

Ссылка на основную публикацию
Adblock
detector