Как рассчитать пусковой ток двигателя?
Bis-auto.ru

Автомобильный портал

Как рассчитать пусковой ток двигателя?

Как рассчитать пусковой ток двигателя

Пусковые токи асинхронных электродвигателей

Подписка на рассылку

Ток, который нужен для запуска электродвигателя, называется пусковым. Как правило, пусковые токи электродвигателей в несколько раз большие, чем токи, необходимые для работы в нормально-устойчивом режиме.

Рисунок 1. Асинхронный электродвигатель Большой пусковой ток асинхронного электродвигателя необходим для того, чтобы раскрутить ротор с места, для чего требуется приложить гораздо больше энергии, чем для дальнейшего поддержания постоянного числа его оборотов. Стоит отметить, что, несмотря на совсем другой принцип действия, однофазные двигатели постоянного тока также характеризуются большими значениями пусковых токов.

Высокие пусковые токи электродвигателей — нежелательное явление, поскольку они могут приводить к кратковременной нехватке энергии для другого подключенного к сети оборудования (падению напряжения). Поэтому при подключении и наладке двигателей переменного тока (наиболее распространенных в промышленности) всегда стоит задача минимизировать значения пусковых токов, а также повысить плавность пуска двигателя за счет применения специального дополнительного оборудования. Такие мероприятия также позволяют снизить уровень затрат на пуск электродвигателя (применять провода меньшего сечения, стабилизаторы и дизельные электростанции меньшей мощности, проч.).

Одной из наиболее эффективных категорий устройств, облегчающих тяжелые условия пуска, являются софтстартеры и частотные преобразователи. Особенно ценным считается их свойство поддерживать пусковой ток двигателей переменного тока в течение продолжительного периода — более минуты. Также пусковой ток асинхронного электродвигателя можно уменьшить за счет внедрения внешнего сопротивления в обмотку ротора.

Расчет пускового тока асинхронного электродвигателя

Рисунок 2. Асинхронный электродвигатель с частотным преобразователем Расчет пускового тока электродвигателя может потребоваться для того, чтобы подобрать подходящие автоматические выключатели, способные защитить линию включения данного электродвигателя, а также для того, чтобы подобрать подходящее по параметрам дополнительное оборудование (генераторы, проч.).

Расчет пускового тока электродвигателя осуществляется в несколько этапов:

Определение номинального тока трехфазного электродвигателя переменного тока согласно формуле: Iн=1000Pн/(Uн*cosφ*√ηн). Рн здесь — номинальная мощность двигателя, Uн выступает номинальным напряжением, а ηн — номинальным коэффициентом полезного действия. Cosφ — это номинальный коэффициент мощности электромотора. Все эти данные можно найти в технической документации по двигателю.

Расчет величины пускового тока по формуле Iпуск=Iн*Кпуск. Здесь Iн — номинальная величина тока, а Кпуск выступает кратностью постоянного тока к номинальному значению, которая также должна указываться в технической документации к электродвигателю.

Точно зная пусковые токи электродвигателей, можно правильно подобрать автоматические выключатели, которые будут защищать линию включения.

Какой ток потребляет двигатель из сети при пуске и работе

В паспорте электрического двигателя указан ток при номинальной нагрузке на валу. Если, например, указано 13,8/8 А, то это означает, что при включении двигателя в сеть 220 В и при номинальной нагрузке ток, потребляемый из сети, будет равен 13,8 А. При включении в сеть 380 В из сети будет потребляться ток 8 А, то есть справедливо равенство мощностей: √ 3 х 380 х 8 = √ 3 х 220 х 13,8.

Зная номинальную мощность двигателя (из паспорта) можно определить его номинальный ток. При включении двигателя в трехфазную сеть 380 В номинальный ток можно посчитать по следующей формуле:

I н = P н/ ( √3 U н х η х с osφ).

где P н — номинальная мощность двигателя в кВт, U н — напряжение в сети, в кВ (0,38 кВ). Коэффициент полезного действия ( η) и коэффициент мощности (с osφ) — паспортные значения двигателя, которые написаны на щитке в виде металлической таблички. См. также — Какие паспортные данные указываются на щитке асинхронного двигателя.

Рис. 1. Паспорт электрического двигателя. Номинальная мощность 1,5 кВ, номинальный ток при напряжении 380 В — 3,4 А.

Если не известны к.п.д. и коэффициент мощности двигателя, например, при отсутствии на двигателе паспорта-таблички, то номинальный его ток с небольшой погрешностью можно определить по соотношению «два ампера на киловатт», т.е. если номинальная мощность двигателя 10 кВт, то потребляемый им ток будет примерно равен 20 А.

Для указанного на рисунке двигателя это соотношение тоже выполняется (3,4 А ≈ 2 х 1,5). Более точные значения токов при использовании данного соотношения получаются при мощностях двигателей от 3 кВт.

При холостом ходе электродвигателя из сети потребляется незначительный ток (ток холостого хода). При увеличении нагрузки увеличивается и потребляемый ток. С увеличением тока повышается нагрев обмоток. Большая перегрузка приводит к тому, что увеличенный ток вызывает перегрей обмоток двигателя, и возникает опасность обугливания изоляции (сгорания электродвигателя).

В момент пуска из сети электрическим двигателем потребляется так называемый пусковой ток. который может быть в 3 — 8 раз больше номинального. Характер изменения тока представлен на графике (рис. 2, а).

Рис. 2. Характер изменения тока, потребляемого двигателем из сети (а), и влияние большого тока на колебания напряжения в сети (б)

Точное значение пускового тока для каждого конкретного двигателя можно определить зная значение кратности пускового тока — I пуск/ I ном. Кратность пускового тока — одна из технических характеристик двигателя, которую можно найти в каталогах. Пусковой ток определяется по следующей формуле: I пуск = I н х ( I пуск/ I ном). Например, при номинальном токе двигателя 20 А и кратности пускового тока — 6, пусковой ток равен 20 х 6 = 120 А.

Знание реальной величины пускового тока нужно для выбора плавких предохранителей, проверке срабатывания электромагнитных расцепителей во время пуска двигателя при выборе автоматических выключателей и для определения величины снижения напряжения в сети при пуске.

Процесс выбора плавких предохранителей подробно рассмотрен в этой статье: Выбор предохранителей для защиты асинхронных электродвигателей

Большой пусковой ток, на который сеть обычно не рассчитана, вызывает значительные снижения напряжения в сети (рис. 2, б).

Если принять сопротивление проводов, идущих от источника до двигателя, равным 0,5 Ом, номинальный ток I н=15 А, а пусковой ток равным пятикратному от номинального, то потери напряжения в проводах в момент пуска составят 0,5 х 75 + 0,5 х 75 = 75 В.

На зажимах двигателя, а также и на зажимах рядом работающих электродвигателей будет 220 — 75 = 145 В. Такое снижение напряжения может вызвать торможение работающих двигателей, что повлечет за собой еще большее увеличение тока в сети и перегорание предохранителей.

В электрических лампах в моменты пуска двигателей уменьшается накал (лампы «мигают»). Поэтому при пуске электродвигателей стремятся уменьшить пусковые токи.

Для уменьшения пускового тока может использоваться схема пуска двигателя с переключением обмоток статора со звезды на треугольник. При этом фазное напряжение уменьшится в √ З раз и соответственно ограничивается пусковой ток. После достижения ротором некоторой скорости обмотки статора переключаются в схему треугольника и напряжение ни них становится равным номинальному. Переключение обычно производится автоматически с использованием реле времени или тока.

Рис. 3. Схема пуска электрического двигателя с переключением обмоток статора со звезды на треугольник

Важно понимать, что не далеко каждый двигатель можно подключать по этой схеме. Наиболее распространенные асинхронные двигатели с рабочим напряжение 380/200 В, в том числе и двигатель, показанный на рисунке 1 при включении по данной схеме выйдут из строя. Подробнее об этом читайте здесь: Выбор схемы соединения фаз электродвигателя

В настоящее время, для уменьшения пускового тока электрических двигателей активно используют специальные микропроцессорные устройства плавного пуска (софт-стартеры). Подробнее о назначении такого типа устройств читайте в статье Для чего нужен плавный пуск асинхронного двигателя.

Статьи и схемы

Полезное для электрика

Пусковой ток двигателя определяется как

где — кратность пускового тока по отношению к номинальному.

Сечение проводов и кабелей до 1 кВ выбираем исходя из условий:

1) по условию нагрева от протекаемого тока

где — поправочный коэффициент на условия прокладки;

2) по условию соответствия аппарату МТЗ (максимальной токовой защиты), установленного в начале линии

где — номинальный ток защитного аппарата, А; — кратность длительного допустимого тока провода по отношению к току срабатывания защиты.

При определении количества проводов, прокладываемых в одной трубе, или жил многожильного проводника, нулевой рабочий проводник, а также заземляющие и нулевые защитные проводники в расчёт не принимаем. Для цеховых электрических сетей принимаем провода и кабели с алюминиевыми жилами, тогда по механической прочности минимальные сечения алюминиевых жил проводов и кабелей внутри помещений не менее 4мм 2 при прокладке на изоляторах, 2,5мм 2 ¾ при других способах прокладки. Проводники с медными жилами применяем во взрывоопасных помещениях классов В1 и В1а, а также в силовых цепях крановых установок. Сечение нулевого и заземляющего провода принимаем равным или большим половины фазного сечения, но не меньше чем того требует механическая прочность.

Читать еще:  Двигатель дымит белым дымом причина что делать?

Приведем пример выбора электродвигателей, пусковых и защитных аппаратов электропривода горизонтально-расточного станка, состоящего из трех двигателей.

1) АИР132М4¾ P=11,0 кВт, h=87,5 %, cosj=0,87, Кп =7,5;

2) АИР112М4¾ Р=5,5 кВт, h=87,5 %, cosj=0,88, Кп =7;

3) АИР80В4¾ Р=1,5 кВт, h=78 %, cosj=0,83, Кп =5,5;

Номинальные токи двигателей по условию (2.10):

Для них по (2.1) выбираем магнитные пускатели:

Согласно (2.2) выберем тепловое реле для первого двигателя

Выбираем тепловое реле типа РТЛ-206104 со средним значением тока теплового реле Iср.т.р. = 27,5 А и номинальным током теплового реле Iном..р. = 80 А.

Для второго электродвигателя

Выбираем тепловое реле типа РТЛ-101604 со средним значением тока теплового реле Iср.т.р. = 12 А и номинальным током теплового реле Iном..р. = 25 А.

Для третьего электродвигателя

Выбираем тепловое реле типа РТЛ-101604 со средним значением тока теплового реле Iср.т.р. =5 А и номинальным током теплового реле Iном..р. = 25 А.

Чтобы определить расчетный ток станка в целом, используем метод определения электрических нагрузок с помощью коэффициента расчетной нагрузки, который будет подробнее изложен далее.

Установленная мощность станка:

По таблице 2.1 для данного станка и .

Эффективное число электроприемников

принимаем при этом по таблицам [метод к курсовому проектированию] .

Тогда расчетная мощность станка

Так как . то принимаем за расчетный ток 21,954 А. Пиковый ток станка определяем по формуле (3.2.5)

По условию (3.2.6) выбираем автоматический выключатель в цепи питания:

· первого электродвигателя станка ВА51Г-25 с . По (3.9)

По (3.2.8) ток срабатывания расцепителя . что удовлетворяет условию (3.2.7): ;

· второго двигателя ВА51Г-25 с . . . . ;

· третьего двигателя ВА51Г-25 с . . . . .

По условию (3.2.3) и (3.2.4) выбираем предохранитель типа ПН2-100/100 для защиты станка: и .

Сечение провода, идущего от рассматриваемого станка к распределительному шкафу, выбираем по условиям (3.2.12) и (3.2.13): и . В итоге выбираем по литературе [4] провод АПВ 5(1´8) с .

Для электропривода с одним двигателем расчёт аналогичен трехдвигательному электроприводу, исключение лишь составляет расчётный ток, который принимаем равным номинальному току двигателя. Все расчеты сводятся в таблицы 3.2.3, 3.2.4, 3.2.5 и 3.2.6.

Таблица 3.2.3- Выбор магнитных пускателей и тепловых реле

Расчет возможности пуска электродвигателя 380 В

В данной статье будет рассматриваться изменение напряжения (потеря напряжения) при пуске асинхронного двигателя с короткозамкнутым ротором (далее двигатель) и его влияние на изменения напряжения на зажимах других электроприемников.

При включении двигателя пусковой ток может превышать номинальный в 5-7 раз, из-за чего включение крупных двигателей существенно влияет на работу присоединенных к сети приемников.

Это объясняется тем, что пусковой ток вызывает значительное увеличение потерь напряжения в сети, вследствие чего напряжение на зажимах приемников дополнительно снижается. Это отчетливо видно по лампам накаливания, когда резко снижается световой поток (мигание света). Работающие двигатели в это время замедляют ход и при некоторых условиях могут вообще остановиться.

Кроме того, может случиться, что сам пускаемый двигатель из-за сильной просадки напряжения не сможет развернуть присоединенный к нему механизм.

Режим пуска двигателя рассматривается при максимальной нагрузке линии, так как именно при таких условиях создаются наиболее неблагоприятные условия для работы присоединенных к сети приемников.

Чтобы проверить можно ли включать двигатель, нужно рассчитать напряжение на его зажимах во время пуска и напряжение на любом другом работающем двигателе, а также проверить напряжение у ламп.

Пример возможности пуска электродвигателя 380 В

Требуется проверить возможность пуска электродвигателя типа 4А250М2 У3 мощностью 90 кВт. От шин 6 кВ подстанции 2РП-1 питается подстанция с трансформаторами типа ТМ мощностью 320 кВА. От подстанции 2РП-1 до трансформаторов ТМ-6/0,4 кВ с установленным ответвлением 0%, проложен кабель марки ААБ сечением 3х70 мм2, длина линии составляет 850 м. К шинам РУ-0,4 кВ присоединен кабелем марки ААБ сечением 3х95 мм2, длиной 80 м двигатель типа 4А250М2 У3.

Рис. 1 — Однолинейная схема 0,4 кВ

В момент пуска двигателя 4А250М2 У3 работает подключенный к шинам двигатель 4А250S2 У3 мощностью 75 кВт с напряжением на зажимах 365 В. Напряжение на шинах 0,4 кВ при пуске двигателя равно Uш = 380 В.

  • Ммакс/Мн – кратность максимального момента;
  • Мп/Мн – кратность пускового момента;
  • Мн – номинальный момент двигателя;

1. Определяем длительно допустимый ток двигателя Д1:

2. Определяем пусковой ток двигателя Д1:

где:
Kпуск = 7,5 – кратность пускового тока, согласно паспорта на двигатель;

3. Определяем величину активного и индуктивного сопротивления для алюминиевого кабеля марки ААБ сечением 3х70 мм2 на напряжение 6 кВ от шин подстанции 2РП-1 до трансформатора типа ТМ 320 кВА, значения сопротивлений берем из таблицы 2.5 [Л2.с 48].

Получаем значения сопротивлений Rв = 0,447 Ом/км и Хв = 0,08 Ом/км.

Эти сопротивления необходимо привести к стороне низшего напряжения трансформатора, так как двигатель подключен к сети низшего напряжения. Из таблицы 8 [Л1, с 93] для номинального коэффициента трансформации 6/0,4 кВ и ответвления 0% находим значение n=15.

4. Определяем активное и индуктивное сопротивление кабеля по отношению к сети низшего напряжения по формуле [Л1, с 13]:

  • Rв и Хв – сопротивления сети со стороны высшего напряжения;
  • n = 6/0,4 =15 – коэффициент трансформации понижающего трансформатора.

5. Определяем сопротивление кабеля длиной 850 м от подстанции 2РП-1 до трансформатора 6/0,4 кВ:

Rс = Rн*L = 0,002*0,85 = 0,0017 Ом;

Хс = Хн*L = 0,000355*0,85 = 0,0003 Ом;

6. Определяем сопротивление трансформатора мощностью 320 кВА, 6/0,4 кВ по таблице 7 [Л1, с 92,93].

Rт = 9,7*10 -3 = 0,0097 Ом;

Хт = 25,8*10 -3 = 0,0258 Ом;

7. Определяем сопротивления линии от шин подстанции 2РП-1 до шин низшего напряжения подстанции:

Rш = Rс + Rт = 0,0017 + 0,0097 = 0,0114 Ом;

Хш = Хс + Хт = 0,0003 + 0,0258 = 0,0261 Ом;

8. Определяем сопротивление кабеля длиной 80 м марки ААБ 3х95 мм2 от шин низшего напряжения до зажимов двигателя:

где:
R = 0,329 Ом/км и Х = 0,06 Ом/км -значения активных и реактивных сопротивлений кабеля определяем по таблице 2-5 [Л2.с 48].

9. Определяем суммарное сопротивление линии от подстанции 2РП-1 до зажимов двигателя:

Rд = Rш + R1 = 0,0114 + 0,026 = 0,0374 Ом;

Хд = Хш + Х1 = 0,0261 + 0,0048 = 0,0309 Ом;

Если выполняется отношение Rд/ Хд = 0,0374/0,0309 = 1,21

где:
cosφ = 0,3 и sinφ = 0,95 средние значения коэффициентов мощности при пуске двигателя, принимаются при отсутствии технических данных, согласно [Л1. с. 16].

11. Определяем напряжение на зажимах двигателя Д1 по формуле [Л1, с 14]:

  • U*ш = Uш/Uн = 380/380 =1 – относительное напряжение на шинах распределительного пункта, во многих случаях его можно принять равным 1;
  • Iп – пусковой ток двигателя;

12. Проверяем сможет ли двигатель Д1 развернуть присоединяемый механизм нанос центробежный 1Д315-71а:

  • mп=Мпуск/Мном = 1,2 – кратность пускового момента электродвигателя при номинальном напряжении на его клеммах (выбирается по каталогу на двигатель);
  • mп.мех — требуемая кратность пускового момента приводимого механизма, выбирается по таблице 4 [Л1, с 88], для центробежного насоса равно 0,3;

12.1 Коэффициент загрузки определяем как отношение номинальной мощности, необходимой для нормальной работы механизма в данном случае нанос центробежный 1Д315-71а Рн.мех. = 80 кВт, к номинальной мощности двигателя 90 кВт:

Как мы видим условие выполняется и двигатель при пуске сможет развернуть присоединенный к нему центробежный насос в нормальных условиях без перегрева своих обмоток выше температуры, допустимой по нормам.

13. Определяем влияние пуска двигателя Д1 на работу присоединенного к шинам 0,4 кВ двигателя Д2 типа 4А250S2 У3, найдем величину колебания напряжения на шинах 0,4 кВ по формуле:

13.1 Определяем коэффициент Аш по формуле:

14. В момент пуска двигателя Д1 на зажимах работающего двигателя Д2 относительное напряжение согласно [Л1, с15] уменьшиться на величину колебания напряжения δU*Ш , откуда получаем:

где:
U*Д2 = UД2/Uн = 365/380 = 0,96 – относительное напряжение на зажимах двигателя Д2 до пуска двигателя Д1.

15. Проверяем устойчивость работы двигателя Д2 при пуске двигателя Д1:

  • mп= Ммакс/Мн = 2,2 – кратность максимального момента (выбирается по каталогу на двигатель);
  • mп.мех — требуемая кратность пускового момента приводимого механизма, выбирается по таблице 4 [Л1, с 88], для центробежного насоса равно 0,3;

15.1 Коэффициент загрузки определяем как отношение номинальной мощности, необходимой для нормальной работы механизма в данном случае нанос центробежный 1Д200-90а Рн.мех. = 72 кВт, к номинальной мощности двигателя 75 кВт:

Как мы видим, устойчивость работы двигателя Д2 типа 1Д200-90а обеспечивается с большим запасом.

1. Как проверить возможность подключения к электрической сети двигателей с короткозамкнутым ротором. Карпов Ф.Ф. 1964 г.
2. Проектирование кабельных сетей и проводок. Хромченко Г.Е. 1980 г.

Читать еще:  Как делается раскоксовка двигателя?

Поделиться в социальных сетях

Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «WebMoney Funding» .

Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.

Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.

Под термином рабочая емкость подразумевается та емкость, которая постоянно включена. Правильно.

В данной статье речь пойдет о выборе кабельных лотков, его типа, габаритных размеров, допустимой нагрузки.

Резисторы типа РЗ для установки в ячейках РУ Резистивное заземление нейтрали осуществляется.

Требуется определить сечения кабеля в сети 0,4 кВ для питания электродвигателя типа АИР200М2 мощностью 37.

В данной статье я буду рассматривать 2 примера определения потери напряжения в воздушной линии 10 кВ.

Отправляя сообщение, Вы разрешаете сбор и обработку персональных данных.
Политика конфиденциальности.

Как определить мощность и ток электродвигателя

Все электрические двигатели выпускаются с табличками на корпусе, из которых можно узнать основные характеристики электродвигателя: его марку, потребляемый номинальный рабочий ток и мощность, частоту вращения, тип двигателя, КПД и cos(fi). Так же эти данные указаны в паспорте к устройству.

Из всех параметров наиболее важное значение для подключения имеют: мощность электродвигателя и потребляемый ток, не стоит его путать с пусковым. Именно эти данные позволяют нам определить достаточность мощности для привода, необходимое сечение кабеля для подключения мотора и подобрать подходящие по номиналу для защиты автомат и тепловое реле.

Но бывает, что нет паспорта или таблички и для определения этих величин необходимо будет сделать измерения. Как узнать мощность, рабочий ток и снизить пусковой, Вы узнаете далее из этой статьи.

Как определить мощность электродвигателя

Проще всего посмотреть на табличку и найти величину в киловаттах. Например, на картинке она равна 45 кВт.Учтите, что эта величина на табличке указывает на потребляемую активную мощность из электросети. Полная же мощность будет равна сумме активной и реактивной мощности. Электрические счетчики в доме или гараже считают только расход активной электроэнергии, а учет реактивной энергии ведется только на предприятиях при помощи специальных счетчиков. Чем выше у электродвигателя cos(fi), тем меньше будет составляющая реактивной энергии в полной мощности. Не стоит путать cos(fi) с КПД. Этот показатель показывает сколько электроэнергии переводится в полезную механическую работу, а сколько в бесполезное тепло. Например, КПД равный 90 процентам, говорит о том, что десятая часть потребленной электроэнергии уходит на тепловые потери и трение в подшипниках.

Вы должны иметь ввиду, что в паспорте или на табличке указывается номинальная мощность, которая будет равна этому значению только при условии достижения оптимальной нагрузки на вал. При чем перегружать не стоит вал по целому ряду причин, лучше выбрать по мощнее мотор. На холостом ходу величина тока будет гораздо ниже номинала.

Как же определить номинальную мощность электродвигателя? В интернете Вы найдете много различных формул и расчетов. Для некоторых необходимо помереть размеры статора, для других формул понадобится знать величину тока, КПД и cos(fi). Мой совет не заморачивайтесь со всем этим. Лучше этих расчетов все равно будут практические измерения. И для их проведения ничего не понадобится вообще.

Как определить мощность любого электроприбора в доме или гараже? Конечно с помощью счетчика электроэнергии. Перед началом измерения отключите все электроприборы из розеток, освещение и все то, что подключено от электрощита.

Далее если у Вас электронный счетчик типа Меркурий, все очень просто надо включить мотор под нагрузкой и погонять минут 5. На электронном табло должна высветится величина нагрузки в кВт, подключенная к счетчику в данный момент.

Если же у вас дисковый индукционный счетчик учитывайте, что он учет ведет в киловатт/часах. Запишите перед началом измерений последние показатели, включайте двигатель строго секунда в секунду ровно на 10 минут, затем после остановки отнимите новые показания от предыдущих и умножайте кВтч на 6. Полученный результат и будет активной мощностью данного двигателя в Киловаттах, для перевода в Ватты разделите на 1000. Рекомендую прочитать статью: как снимать показания электросчетчика.

Если двигатель маломощный, тогда для более высокой точности можно посчитать обороты диска. Например, за одну минуту он сделал 10 полных оборотов, а на счетчике написано 1200 оборотов= 1 кВт/ч. 10 умножаем на количество минут в часе и получаем 600 оборотов за час. 1200 делим на 600 и получаем 500 Ватт или 0.5 кВт. Чем дольше по времени будете измерять, тем точнее будут данные. Но время всегда должно быть кратно полной минуте. Затем делим 60 на количество минут измерения и умножаем на сосчитанные обороты. После этого величину оборотов, равных одному Киловатт/часу для вашей модели электросчетчика делим на полученный результат и получаем необходимую величину мощности.

Как определить потребляемый ток электродвигателя

Зная мощность, легко можно высчитать величину потребляемого тока. Для 3 фазных двигателей, подключенных по схеме звезда на 380 Вольт, необходимо умножить мощность в киловаттах на 2. Например, при мощности 5 киловатт ток будет равен 10 Ампер. Опять же учитывайте, что такой ток мотор будет брать только под нагрузкой максимально близкой к номиналу. Полунагруженный электродвигатель и тем более на холостом ходу будет потреблять значительно меньший ток.

Для определения тока в однофазных сетях, необходимо мощность разделить на напряжение. Например, при работе двигателя напряжение в месте его подключения равно 230 Вольт. Это важно так, как после включения нагрузки напряжение скорее всего понизится в месте подключения электродвигателя.

Если например, мощность мотора на 220 Вольт по измерениям оказалась равной 1.5 кВт или 1500 Ватт. Делим 1500 на 230 Вольт и получаем, что рабочий ток двигателя приблизительно равен 6.5 Ампер.

Пусковой ток электродвигателя

При запуске любого типа электродвигателя возникает пусковой ток от 2 до 8 кратного значению номинального тока в рабочем режиме электродвигателя. Величина пускового тока зависит от типа двигателя, скорости вращения, схемы подключения, наличие нагрузки на валу и от других параметров.

Пусковой ток возникает, потому что в момент запуска наводится очень сильное магнитное поле в обмотках необходимое, что бы сдвинуть с места и раскрутить ротор. При включении мотора сопротивление обмоток мало, а следовательно по закону Ома, ток вырастает при неизменном напряжении в участке цепи. По мере того как двигатель раскручивается, возникает в обмотках ЭДС или индуктивное сопротивление и ток начинает уменьшаться до номинального значения.

Эти всплески реактивной энергии негативно сказываются на работе других электропотребителей, подключенных к этой же линии электропитания, что служит причиной возникновения особенно губительных для электроники скачков или перепадов напряжения.

Снизить вдвое пусковой ток можно при использовании специально разработанного для этих целей тиристорного блока, а лучше при помощи устройства плавного запуска (УПЗ). УПЗ с меньшим пусковым током и быстрее в полтора раза запускает мотор по сравнению с тиристорным запуском. Устройства плавного запуска подходят как к синхронным, так и к асинхронным двигателям. УПЗ выпускаются предприятиями Украины и России.

Для запуска трехфазного асинхронного двигателя сегодня нередко используются и преобразователя частоты. Широкое их распространение пока сдерживает только цена. Благодаря изменению величин частоты тока и напряжения удается не только сделать плавный запуск, но и регулировать скорость вращения ротора. По другому как только изменением частоты электрического тока, регулировать скорость вращения асинхронного двигателя нет возможности. Но следует знать, что частотный преобразователь создает помехи в электросети, поэтому для подключения электроники и бытовой техники используйте сетевой фильтр.

Использование устройства плавного запуска и частотного преобразователя позволяет не только сохранить стабильность электропитания у Вас и Ваших соседей, подключенных к одной линии электроснабжения, но и продлить срок службы электродвигателей.

Какой ток потребляет двигатель из сети при пуске и работе

В паспорте электрического двигателя указан ток при номинальной нагрузке на валу. Если, например, указано 13,8/8 А, то это означает, что при включении двигателя в сеть 220 В и при номинальной нагрузке ток, потребляемый из сети, будет равен 13,8 А. При включении в сеть 380 В из сети будет потребляться ток 8 А, то есть справедливо равенство мощностей: √ 3 х 380 х 8 = √ 3 х 220 х 13,8.

Зная номинальную мощность двигателя (из паспорта) можно определить его номинальный ток . При включении двигателя в трехфазную сеть 380 В номинальный ток можно посчитать по следующей формуле:

Читать еще:  Как слить охлаждающую жидкость с блока двигателя?

I н = P н/ ( √3 U н х η х с osφ) ,

где P н — номинальная мощность двигателя в кВт, U н — напряжение в сети, в кВ (0,38 кВ). Коэффициент полезного действия ( η) и коэффициент мощности (с osφ) — паспортные значения двигателя, которые написаны на щитке в виде металлической таблички. См. также — Какие паспортные данные указываются на щитке асинхронного двигателя.

Рис. 1. Паспорт электрического двигателя. Номинальная мощность 1,5 кВ, номинальный ток при напряжении 380 В — 3,4 А.

Если не известны к.п.д. и коэффициент мощности двигателя, например, при отсутствии на двигателе паспорта-таблички, то номинальный его ток с небольшой погрешностью можно определить по соотношению «два ампера на киловатт», т.е. если номинальная мощность двигателя 10 кВт, то потребляемый им ток будет примерно равен 20 А.

Для указанного на рисунке двигателя это соотношение тоже выполняется (3,4 А ≈ 2 х 1,5). Более точные значения токов при использовании данного соотношения получаются при мощностях двигателей от 3 кВт.

При холостом ходе электродвигателя из сети потребляется незначительный ток (ток холостого хода). При увеличении нагрузки увеличивается и потребляемый ток. С увеличением тока повышается нагрев обмоток. Большая перегрузка приводит к тому, что увеличенный ток вызывает перегрей обмоток двигателя, и возникает опасность обугливания изоляции (сгорания электродвигателя).

В момент пуска из сети электрическим двигателем потребляется так называемый пусковой ток , который может быть в 3 — 8 раз больше номинального. Характер изменения тока представлен на графике (рис. 2, а).

Рис. 2. Характер изменения тока, потребляемого двигателем из сети (а), и влияние большого тока на колебания напряжения в сети (б)

Точное значение пускового тока для каждого конкретного двигателя можно определить зная значение кратности пускового тока — I пуск/ I ном. Кратность пускового тока — одна из технических характеристик двигателя, которую можно найти в каталогах. Пусковой ток определяется по следующей формуле: I пуск = I н х ( I пуск/ I ном). Например, при номинальном токе двигателя 20 А и кратности пускового тока — 6, пусковой ток равен 20 х 6 = 120 А.

Знание реальной величины пускового тока нужно для выбора плавких предохранителей, проверке срабатывания электромагнитных расцепителей во время пуска двигателя при выборе автоматических выключателей и для определения величины снижения напряжения в сети при пуске.

Процесс выбора плавких предохранителей подробно рассмотрен в этой статье: Выбор предохранителей для защиты асинхронных электродвигателей

Большой пусковой ток, на который сеть обычно не рассчитана, вызывает значительные снижения напряжения в сети (рис. 2, б).

Если принять сопротивление проводов, идущих от источника до двигателя, равным 0,5 Ом, номинальный ток I н=15 А, а пусковой ток равным пятикратному от номинального, то потери напряжения в проводах в момент пуска составят 0,5 х 75 + 0,5 х 75 = 75 В.

На зажимах двигателя, а также и на зажимах рядом работающих электродвигателей будет 220 — 75 = 145 В. Такое снижение напряжения может вызвать торможение работающих двигателей, что повлечет за собой еще большее увеличение тока в сети и перегорание предохранителей.

В электрических лампах в моменты пуска двигателей уменьшается накал (лампы «мигают»). Поэтому при пуске электродвигателей стремятся уменьшить пусковые токи.

Для уменьшения пускового тока может использоваться схема пуска двигателя с переключением обмоток статора со звезды на треугольник. При этом фазное напряжение уменьшится в √ З раз и соответственно ограничивается пусковой ток. После достижения ротором некоторой скорости обмотки статора переключаются в схему треугольника и напряжение ни них становится равным номинальному. Переключение обычно производится автоматически с использованием реле времени или тока.

Рис. 3. Схема пуска электрического двигателя с переключением обмоток статора со звезды на треугольник

Важно понимать, что не далеко каждый двигатель можно подключать по этой схеме. Наиболее распространенные асинхронные двигатели с рабочим напряжение 380/200 В, в том числе и двигатель, показанный на рисунке 1 при включении по данной схеме выйдут из строя. Подробнее об этом читайте здесь: Выбор схемы соединения фаз электродвигателя

В настоящее время, для уменьшения пускового тока электрических двигателей активно используют специальные микропроцессорные устройства плавного пуска (софт-стартеры) . Подробнее о назначении такого типа устройств читайте в статье Для чего нужен плавный пуск асинхронного двигателя.

Что такое пусковой ток электродвигателя

На электродвигателях есть табличка, в которой указаны основные технические характеристики агрегата: мощность, частота вращения и т. д. Однако производители не говорят о таком параметре, как пусковой ток. Это важная характеристика, которая оказывает существенное влияние на работу силового агрегата. Хороший электрик должен уметь определять этот показатель, и знать, что делать с полученными значениями.

Определение понятия

Пусковой ток двигателя – электроток, потребляемый силовым агрегатом в момент старта. Его показатель в несколько раз превышает значение номинального тока и при выборе оборудования крайне важно учитывать этот параметр. Здесь уместно сравнение с автомобилем, при разгоне которого тратится значительно больше топлива в сравнении с движением при постоянной скорости. Это явление характерно для различного электрооборудования:

  • Погружные насосы – отличаются самым тяжелым стартом, и их пусковой электроток может превышать номинальный в 9 раз.
  • Холодильники – при запуске сила тока превышает номинальный в 3,33 раза.
  • Микроволновые печи – показатель пускового электротока в 2 раза выше номинального значения.

Это связано с тем, что в момент включения электродвигателя в его обмотке создается сильное магнитное поле, необходимое для раскручивания ротора. Именно поэтому показатель электротока пуска значительно превышает номинальное значение. На его значение оказывают влияние различные факторы:

  • Наличие нагрузки на валу силового агрегата.
  • Скорость вращения.
  • Схема подключения и т. д.

Особенности расчета

Определение значения пускового тока электродвигателя проводится в два этапа. Сначала необходимо рассчитать номинальный электроток, для этого используется следующая формула:

Затем можно переходить к определению показателя тока пуска, используя формулу:

Зная это значение, можно легко подобрать выключатели-автоматы, обеспечивая тем самым надежную защиту линии включения. В паспорте электродвигателей указано значение силы тока при номинальной нагрузке на валу силового агрегата. Например, если на моторе присутствует надпись 13,8/8 А, то при его включении в сеть на 220 В и номинальной нагрузке, сила тока будет составлять13,8 А. Когда он подсоединен к сети 380 В, то ток составит 8 А.

Если известна номинальная мощность силового агрегата, можно легко выяснить и его номинальный ток. Для этого предстоит воспользоваться формулой:

Иногда коэффициент мощности мотора может оказаться неизвестным. В такой ситуации стоит воспользоваться простым соотношением – 2 А/1 кВт.

Например, если показатель номинальной мощности мотора составляет 15 кВт, то он будет потреблять около 30 А. Погрешность при таком расчете минимальна.

Практическое применение

Силовые приводы будут эксплуатироваться правильно только в том случае, если при их выборе были учтены пусковые характеристики.

Высокий стартовый ток представляет серьезную опасность для электрооборудования. Если не принимать мер по его ограничению, возможны серьезные проблемы.

Ток пуска может повредить не только сам мотор, но и другое электрооборудование, установленное с ним на одной линии. Для решения поставленной задачи можно использовать следующие методы:

  • Производить запуск силового агрегата на холостом ходу – нагрузка прикладывается только после перехода мотора в рабочий режим.
  • При подключении использовать схему треугольник-звезда.
  • Применять автотрансформаторный пуск – напряжение на двигатель подается через автотрансформатор, что позволяет добиться плавного повышения силы тока.
  • Использовать пусковые резисторы.
  • Применение частотных регуляторов и тиристорных устройств плавного запуска.

С помощью устройств плавного пуска, основанных на тиристорах, можно снизить показатель электротока пуска в два раза. При этом они могут работать как с асинхронными, так и синхронными электромоторами. В случае с трехфазными асинхронными двигателями, широкое распространение получили преобразователи частоты. Они позволяют изменять частоту электротока, обеспечивая не только плавный старт мотора, но и частоту вращения его ротора. Это эффективные устройства, но с высокой стоимостью. Следует помнить, что частотные преобразователи создают в сети помехи, устранить которые поможет сетевой фильтр.

Также можно использовать схему пуска силового агрегата с переключением обмоток со звезды на треугольник.

Для решения поставленной задачи часто применяются реле времени. Однако следует помнить, что этот способ подходит не для всех электромоторов.

Например, этот метод не применяется при подключении асинхронных электромоторов, рассчитанных на напряжение 220-380 В.

Сейчас на рынке появились более современные устройства – софт-стартеры. Они основаны на микропроцессорах и весьма эффективны. Единственным недостатком этих устройств может считаться лишь высокая стоимость.

Ссылка на основную публикацию
Adblock
detector